Impact of Chilling on Poultry Carcass Microbiology

Julie K. Northcutt, Ph.D.
Research Food Technologist
USDA-Agriculture Research Service
Athens, Georgia

Poultry Chilling

- Reduces microbial growth
- Methods include:
 - Traditional Immersion
 - Dry Air or Evaporative (Spray)
Poultry Chilling

- Numerous studies on poultry immersion chilling
- Limited number of studies on dry air and/or evaporative air chilling
- Only a few projects have compared chilling methods
- Many do not cite the chilling conditions and rates or the details are incomplete

Poultry Chilling

- Comprehensive review articles:
 - Brant, 1974. Poult. Sci. 53:1291-1295
 - Thomson et al., 1974. Poultry Sci. 53:1268-1281
 - James et al., 2005. Int. J. Refrig. 20:1-17
Microbiology of Poultry Chilling

- **Salmonella** – Most determined prevalence (# positive) and not numbers
- **Overall, Salmonella prevalence was reduced by immersion and air chilling (1 exp.)**
- **Campylobacter** – Up to 2 log cfu/mL reduction with immersion chilling (WCR)
- **Little change in Campylobacter with air chilling** (neck-skin maceration method; Kuwait)

Previous Research

Microbiology of Poultry Chilling

- **Generic Escherichia coli / coliforms** – About 1 log cfu/mL reductions without chlorine and 2 to 3 log cfu/mL reductions with chlorine (20-25 ppm)
- **No significant reductions with air chilling, but again used neck-skin maceration recovery method.**

Effect of Broiler Feed Withdrawal and Transportation on Levels of *Campylobacter*, *Salmonella*, and *E. coli* on Carcasses Before and After Immersion Chilling.

Poultry Science 82:169-173

USDA-ARS Research

- Commercial Campy positive broilers moved to floor pens
- Inoculated with marker *Salmonella*
- Processed at ages 42, 49, and 56-d
- WCR after manual final wash (Pre-chill)
- WCR after chilling with 20 PPM chlorine (Post-chill)

Prototype Tumble Chiller

Effect of Chilling on Counts

Northcutt et al., 2003
USDA-ARS Research

Effect of Pre-chill Fecal Contamination on Numbers of Bacteria Recovered from Broiler Chicken Carcasses Before and After Immersion Chilling.

Journal of Food Protection 67:1829-1833.

USDA-ARS Research

- Prechill carcasses cut in half
- 3 X 5 cm rectangle on each breast
- 0.1 g “fresh” feces put on one half
- Waited 10 min, spray washed
- Chilled 45 min, half carcass rinse
- Skin pieces removed, stomached

Cason et al., 2004
Fecal Contamination During Processing

E. coli in rinses and skin samples
(log counts per half carcass or piece)

<table>
<thead>
<tr>
<th></th>
<th>Post-chill rinse</th>
<th>Skin pieces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Feces</td>
<td>5.5</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Same pattern and comparable counts for *Enterobacteriaceae* and Coliforms
Post Chill Carcass Counts

USDA-ARS Research

Broiler Carcass Bacterial Counts After Immersion Chilling Using Either a Low or High Volume of Water.

Poultry Science submitted for publication.
Half of each pair was chilled in either 0.25 gal / pound or 2 gal / pound of non-chlorinated water.

After 45 min, removed rinsed.

Northcutt et al., 2006.

Carcass Bacterial Counts

Northcutt et al., 2006. Submitted to Poultry Science.
Immersion Chiller Water Counts

Northcutt et al., 2006. Submitted to Poultry Science

University of Bristol

Microbial Cross-Contamination During Air Chilling of Poultry

British Poultry Science 41:158-162.
Materials and Methods
- Marker Strain of *E. coli* on one carcass
- Evaporative Air Chilling – 50 PPM Chlorine
- Dry Air Chilling
- Evaluated contamination +/- 10 carcasses away from contaminated

Mead et al., 2000

= Inoculated
10 mL of 10^9 cfu/mL

= Sampled
Evaporative Air Chilling

Mead et al., 2000

Dry Air Chilling

Mead et al., 2000
Conclusions

- Immersion chilling causes at least 1.0 log reduction in carcass pathogenic bacteria
- Post chill, fecally-contaminated carcasses are microbiologically equivalent to non-contaminated carcasses
- Potential exists for cross-contamination during immersion and air chilling, particularly if antimicrobials are missing, or not used correctly (monitored)