FSIS Update:
Office of Public Health Science

NCC Technical and Regulatory Committee Meeting
January 30, 2018

Kis Robertson Hale, DVM, MPH, DACVPM
CAPT, US Public Health Service
Deputy Assistant Administrator, Office of Public Health Science
USDA/Food Safety and Inspection Service
Food Safety and Inspection Service:

Topics

- FSIS outbreak investigations
- Latest in antimicrobial resistance
- Update on other chicken parts sampling
- Laboratory methods changes
- Status of Accredited Laboratory Program
Food Safety and Inspection Service:
FSIS: A Public Health Regulatory Agency

Ensure meat, poultry, and processed egg products are safe, wholesome, and correctly labeled and packaged.

Goal 1
Prevent Foodborne Illness and Protect Public Health

Goal 2
Modernize Inspection Systems, Policies, and the Use of Scientific Approaches

Goal 3
Achieve Operational Excellence
Food Safety and Inspection Service:
FY 2012–2017 Illness Investigations

FY 2012–2017 Clusters Investigated by Pathogen (N=120)

- Campylobacter
- E. coli
- Listeria
- Multipathogen
- Salmonella
- Other

Fiscal Year

- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
Food Safety and Inspection Service:
FY 2017 Illness Investigations

FY 2017 Illness Investigations by Pathogen (N=8)

- *Salmonella*, 75.0%
- *Listeria*, 12.5%
- *E. coli*, 12.5%
Food Safety and Inspection Service:
Chicken-Associated Investigations*, FY 2015–2017

<table>
<thead>
<tr>
<th></th>
<th>FY2015</th>
<th>FY2016</th>
<th>FY2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of investigated outbreaks with evidence of potential link to FSIS-regulated product*</td>
<td>20</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Outbreaks (% of total) with evidence of potential link to chicken</td>
<td>8 (40%)</td>
<td>7 (39%)</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>RTE</td>
<td>0 (0%)</td>
<td>1 (14%)**</td>
<td>1 (50%)**</td>
</tr>
<tr>
<td>Raw</td>
<td>8 (100%)</td>
<td>7 (100%)</td>
<td>2 (100%)</td>
</tr>
<tr>
<td>Total number of illnesses from outbreaks with evidence of potential link to chicken</td>
<td>352</td>
<td>336</td>
<td>59</td>
</tr>
<tr>
<td>Chicken-associated outbreaks (% of total) resulting in FSIS recall</td>
<td>3 (38%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Salmonella serotype responsible for most outbreaks</td>
<td>I 4,[5],12:i:- and Enteritidis</td>
<td>I 4,[5],12:i:- and Enteritidis</td>
<td></td>
</tr>
</tbody>
</table>

*Includes outbreaks definitely, likely/presumptive, and possibly associated with FSIS-regulated product
**1 outbreak in FY2016 and 1 outbreak in FY2017 involved both RTE and raw poultry*
Federal agencies begin using WGS to study and investigate foodborne *Listeria* illnesses

2015

Routine use in surveillance of *Listeria*, *Campylobacter*, STEC, and *Salmonella*

2016

PulseNet supports analysis of *Salmonella* WGS data to investigate outbreaks

2018

WGS replaces PFGE for subtyping *Lm* at FSIS
How WGS has Impacted Outbreak Investigations

- Grouped isolates with different PFGE patterns into single cluster
- Determined the source of older unsolved illnesses/clusters
- Refined outbreak case definitions by excluding unrelated isolates
- Linked sporadic illnesses to contaminated food
- Identified outbreaks following product testing
- Helped in understanding the ecology of pathogen reservoirs
How WGS has Impacted Outbreak Investigations

- Grouped isolates with different PFGE patterns into a single cluster
- Determined the source of older unsolved illnesses/clusters
- Refined outbreak case definitions by excluding unrelated isolates
- Linked sporadic illnesses to contaminated food
- Identified outbreaks following product testing
- Helped in understanding the ecology of pathogen reservoirs
Food Safety and Inspection Service:

2017 *Salmonella* Enteriditis Investigation

- 53 illnesses in 25 states; not uncommon PFGE pattern
- Available epidemiologic data limited to a single-state subcluster linked to a catered event
 - Attendees consumed chicken traced to a federal establishment
 - Historic isolate from establishment matched clinical PFGE pattern
- No known links between subcluster cases and other illnesses
- **Question**: Were all these illnesses part of an outbreak?
Food Safety and Inspection Service:

Using WGS to Exclude Unrelated Cases

- Clinical isolates in subcluster found related to each other by WGS
 - 0 SNP differences (0-1 alleles)
 - However, these isolates were not closely related to the historic product isolate (10-17 SNP differences)

- Other clinical isolates found unrelated to subcluster isolates

- WGS helped inform decision not to conduct additional case-patient interviews because evidence did not support existence of a larger outbreak associated with chicken
Source: CDC
Antimicrobial Resistance

- NARMS public meeting highlights
- AMR findings in poultry
• Overall, isolates of Salmonella have become more susceptible since NARMS began, and resistance to multiple drugs has declined

• Low levels of resistance to critically important antibiotics ceftriaxone and ciprofloxacin

• Apparent differences between cecal and HACCP findings

• Overall, US doing well in managing AMR: For the first time, we have been able to compare critically important antimicrobials tested in NARMS - third-generation cephalosporins, ciprofloxacin, and nalidixic acid – to Salmonella data from European Union (EU) countries. In the United States, resistance to third-generation cephalosporins, ciprofloxacin, and nalidixic acid compares very favorably to the EU findings.
• **Public Comments Highlights:**
 - Publication of summary data by agencies should be within the calendar year after data is collected
 - All three Agencies should harmonize formatting and presenting data
 - Representativeness of cecal data and conclusions based on a nation wide data collection program need to be discussed further

• **Next Steps:**
 - NARMS is considering to broaden collaboration with other programs and intends to take a One Health approach by considering animal pathogens, on-farm testing, companion animals, and an environmental component
 - NARMS will focus on developing the next Strategic Plan considering the recent recommendations from the Science Board and the input from this Public Meeting
NARMS at FSIS: Sampling and Results – *Salmonella*

Chickens

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Samples</td>
<td>No. Isolates</td>
<td>Percent Positive</td>
<td>No. Samples</td>
</tr>
<tr>
<td>HACCP</td>
<td>10,446</td>
<td>936</td>
<td>9.0%</td>
<td>11,453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cecal</td>
<td>575</td>
<td>103</td>
<td>17.9%</td>
<td>553</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary 2017 Data
Food Safety and Inspection Service

Multi-Drug Resistance (MDR) in *Salmonella* from Chickens

Percent of *Salmonella* isolates MDR - resistant to ≥ 3 antimicrobial classes

- **Cecal Chicken – MDR Serotypes**
 - Infantis: 37%
 - Kentucky: 6%
 - Typhimurium: 26%
 - Heidelberg: 22%
 - Enteritidis: 2%
 - Rough_O::r:1,5: 5%
 - Others: 2%

- **HACCP Chicken – MDR Serotypes**
 - Infantis: 34%
 - Kentucky: 14%
 - Typhimurium: 3%
 - Heidelberg: 1%
 - Enteritidis: 1%
 - Rough_O::r:1,5: 1%
 - Others: 1%

Preliminary 2017 Data
Food Safety and Inspection Service

Salmonella Infantis in Chickens

Percent of Chicken Isolates

<table>
<thead>
<tr>
<th>Year</th>
<th>HACCP</th>
<th>Cecal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>1998</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1999</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>2001</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>2007</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>2012</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>2013</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>2014</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>2015</td>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>2016</td>
<td>112</td>
<td>62</td>
</tr>
<tr>
<td>2017*</td>
<td>301</td>
<td>193</td>
</tr>
</tbody>
</table>

Preliminary 2017 Data
Food Safety and Inspection Service

Salmonella Infantis in Chickens – Distribution by Sample Type/Project Code

![Graph showing distribution of *Salmonella* Infantis in Chickens by sample type and project code from 1997 to 2017.]

Ground Chicken (HC01_GC) R
NRTE-Exploratory (NRTE_EXP_CH) R
Comminuted (HC_CH_COM01) A
Carcass Rinse (HC11_BR) R
Carcass Rinse (HC_CH_CARC01) A
Parts (HC_CPT_LBW01) A

Preliminary 2017 Data | R=Retired Project Code | A: Active Project code
Food Safety and Inspection Service
Multi-Drug Resistance (MDR) in *Salmonella* from Chickens

MDR – Which antimicrobial drugs are involved?

- **Azithromycin**: 1%
- **Trimethoprim/Sulfa**: 28%
- **Ciprofloxacin**: 41%
- **Streptomycin**: 41%
- **Sulfisoxazole**: 42%
- **Ceftriaxone**: 71%
- **Ampicillin**: 77%
- **Tetracycline**: 84%

Extreme Drug Resistance (XDR) 2014-2017

- Four isolates from HACCP (1 Thompson, 1 Typhimurium, 2 Kentucky)
- None from Cecal

Includes those classified as intermediate
Food Safety and Inspection Service

Campylobacter in Chickens

Campylobacter Species Distribution - Chickens

Cecal

- **Jejuni**: 12%
- **Coli**: 88%

HACCP

- **Jejuni**: 31%
- **Coli**: 69%

Preliminary 2017 Data
Food Safety and Inspection Service

MDR Campylobacter coli from Chickens

Percent of C. Coli isolates MDR - resistant to > 3 antimicrobial classes

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cecal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. MDR</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Total No.</td>
<td>70</td>
<td>53</td>
<td>59</td>
<td>197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>HACCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. MDR</td>
<td>6</td>
<td>27</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Total No.</td>
<td>574</td>
<td>751</td>
<td>923</td>
<td>450</td>
</tr>
</tbody>
</table>

MDR in *C. Jejuni* was <2% for in both Cecal and HACCP

Preliminary 2017 Data
Food Safety and Inspection Service:

Update on Other Chicken Parts Sampling
Food Safety and Inspection Service:
FSIS Notice 72-16 (Sep 21, 2016)

- Sampling implemented on November 1, 2016
- Included sampling of necks, giblets, & quarters and halves
- Two Project Codes using one PHIS product group to schedule samples
 - EXP_CPT_OT01: Uses 50 ml of rinsate for a specified number of parts (necks, hearts, giblets, and livers)
 - EXP_CPT_QH01: Uses 400 ml of rinsate for a specified of parts (quarters and halves)
Table 1. Number of Quarter and Half Carcasses to Collect for EXP_CPT_QH01 (for all live bird weights)

<table>
<thead>
<tr>
<th>Type of Raw Chicken Part</th>
<th>Number of Raw Chicken Parts to Collect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half Carcasses</td>
<td>2</td>
</tr>
<tr>
<td>Quarter Carcasses</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2. Number of Necks, Livers, Hearts, and Gizzards to Collect for EXP_CPT_OT01

<table>
<thead>
<tr>
<th>Type of Raw Chicken Part</th>
<th>Number of Raw Chicken Parts to Collect, by Average Live Bird Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 4 lb</td>
</tr>
<tr>
<td>Hearts</td>
<td>52</td>
</tr>
<tr>
<td>Livers</td>
<td>12</td>
</tr>
<tr>
<td>Gizzards</td>
<td>40</td>
</tr>
<tr>
<td>Necks</td>
<td>3</td>
</tr>
</tbody>
</table>
A total of 317 eligible product samples have been collected under this project code. This includes 22 discards.

Data pulled from FSIS data warehouse on 12/18/17
A total of 124 eligible products have been collected under this project code. This includes 7 discards.

- **Half-Carcass**: 83, 67%
- **Quarter-Carcass**: 41, 33%

Data pulled from FSIS data warehouse on 12/18/17
Food Safety and Inspection Service:

Salmonella Results for Necks and Giblets

Data pulled from FSIS data warehouse on 12/18/17
Food Safety and Inspection Service:
Campylobacter Results for Necks and Giblets

Data pulled from FSIS data warehouse on 12/18/17
Food Safety and Inspection Service: *Salmonella Results for Halves and Quarters*

Data pulled from FSIS data warehouse on 12/18/17
Food Safety and Inspection Service:

Campylobacter Results for Halves and Quarters

Data pulled from FSIS data warehouse on 12/18/17
Food Safety and Inspection Service:

Lab Method Changes and Accredited Lab Program
Food Safety and Inspection Service:
Poultry-Related Method Changes in FY17

Microbiology
- No new method updates applicable to poultry
- In Dec 2017, the Microbiology Laboratory Guidebook (MLG) was revised to include the recipe for neutralizing Broth Peptone Water (nBPW)

Chemistry
- No new method updates applicable to poultry
- Pesticide screening method extended to processed egg products
Food Safety and Inspection Service:

Latest on Accredited Laboratory Program (ALP)

- Currently, non-FSIS laboratory can be accredited for analysis of food chemistry (fat, protein, etc.) and select chemical residues

- Under consideration:
 - Change statistical methods used in measuring chemical lab performance
 - Expansion of program to include pathogen testing

- Modernizing ALP is aimed at increasing efficiencies
Closing Thoughts

• Technological advances are expanding FSIS’ insight into foodborne illness and antimicrobial resistance

• Data from other chicken parts sampling highlight potential gaps in pathogen reduction

• FSIS’ laboratories and associated programs are a major focus of Agency modernization efforts
Food Safety and Inspection Service:

Questions?

Kis.Robertson@fsis.usda.gov