Lethality of Commercial Whole-Muscle Beef Jerky Manufacturing Processes

Against *Salmonella* serovars and *Escherichia coli* O157:H7

Dennis R. Buege\(^1\), Gina Searls\(^1\), and Steven C. Ingham\(^2\)\(^*\)

University of Wisconsin-Madison

\(^1\)Department of Animal Sciences, \(^2\)Department of Food Science

Short Title: Lethality of Commercial Beef Jerky Manufacturing Processes

Key Words: beef jerky, *Salmonella, Escherichia coli* O157:H7

*Corresponding author

University of Wisconsin-Madison, Department of Food Science

1605 Linden Drive

Madison, WI 53706

Phone 608-265-4801, fax 608-262-6872, e-mail scingham@wisc.edu
ABSTRACT

Thermal processing used in making whole-muscle beef jerky also involves drying. This drying may cause enhanced pathogen thermotolerance and evaporative cooling that reduce process lethality. Several salmonellosis outbreaks have been associated with beef jerky. In this study, a standardized process was used to inoculate beef strips with 5-strain cocktails of either \textit{Salmonella} serovars or \textit{Escherichia coli} O157:H7, marinade the strips in pH 5.3 marinade for 22-24 h at 5°C, and then convert the strips to jerky using various heating/drying regimes. Numbers of surviving organisms were determined during and after the heating/drying. In some trials, a commercial lactic acid starter culture was also evaluated as a potential surrogate for the pathogens. The 5-log \textit{Salmonella} reduction mandated by the United States Department of Agriculture (USDA), along with a 5-log reduction in \textit{E. coli} O157:H7, was best achieved by ensuring that high wet-bulb temperatures were reached and maintained early in the process (51.7°C or 54.4°C for 60 minutes, 57.2°C for 30 minutes, or 60°C for 10 minutes) followed by drying at 76.7°C (dry-bulb temperature). Processes that met the USDA guideline with smaller safety margins were 1) heating and drying at 76.7°C (dry-bulb) within 90 minutes of beginning the process, 2) heating for successive hourly intervals at 48.9, 54.4, 60, and 76.7°C (dry-bulb), or 3) heating at 51.7°C (dry-bulb), followed by 76.7°C (dry-bulb) drying started before product a_w was < 0.86. Achieving a \geq 3.0 log reduction in the starter culture is a possible standard for validating process lethality.
Beef jerky processing, using whole muscle or restructured ground meat, is unique compared to the processing of other ready-to-eat meat products because heat processing is intended to attain considerable drying and desired texture and shelf-stability. This drying may reduce the process lethality against pathogenic bacteria in beef, and outbreaks of salmonellosis have been linked to the consumption of beef jerky (6). Previous research has suggested that sub-lethal drying conditions may lead to increased heat-resistance in pathogens such as *Salmonella* serovars (7). Furthermore, evaporative cooling during drying may lessen the effective temperature to which pathogens are exposed. A possible decrease in lethality related to evaporative cooling on the surface of cooked beef was noted previously in studies of *Salmonella* spp. survival during cooking of beef (2, 8). In fact, Blankenship et al., (1) recommended introduction of steam into the oven when cooking beef roasts to ensure that adequate lethality against salmonellae was attained on the roast surface. Evaporative cooling was also noted as a factor contributing to insufficient thermal lethality in making jerky associated with an outbreak of salmonellosis in New Mexico in 2003 (11). All of these factors have resulted in heightened scrutiny of the lethality of the heating and drying steps typically used during jerky processing.

United States Department of Agriculture (USDA) officials have issued a compliance guideline for jerky processors (14) that stresses the importance of maintaining high humidity during thermal processing in order to ensure sufficient destruction of *Salmonella* spp. and *Escherichia coli* O157:H7. However, processors have had difficulty either complying with USDA guidance or developing and validating
adequate alternative processes while still obtaining desired finished product characteristics. Previously suggested techniques for ensuring adequate lethality included boiling beef strips in marinade prior to cooking and drying, and oven-heating beef jerky strips after drying (9, 10). Commercial processors have not widely adopted these methods, either because of perceived adverse effects on product sensory characteristics or because of economic or efficiency concerns. Development of validated heating/drying guidelines for processors of whole-muscle jerky has been further complicated by variables such as thickness of jerky strips, whether the strips have been marinated and, if so, the composition and conditions of marination, the type of smokehouse or oven used for heating/drying, and the weather and altitude at the processing plant.

Presently, the USDA has indicated that a jerky-making process has sufficient lethality if it results in a 5-log reduction of *Salmonella* spp. (written communication from Dr. Paul Uhler, USDA – FSIS, 2005). Furthermore, USDA officials have stated that the lethality of non-thermal steps in jerky-making, such as marination, can be counted toward meeting the overall process lethality requirement (Dan Englejohn, USDA – FSIS, personal communication, 2005). Pre-existing USDA guidance for certain other beef products specified a 6.5 log reduction in *Salmonella* spp. (15). The newer 5-log reduction standard resulted from a USDA draft risk assessment of the impact of different lethality standards for ready-to-eat meat and poultry products on the incidence of salmonellosis (13). This risk assessment determined that decreasing the pathogen reduction standard from 6.5 logs to 5 logs for products such as jerky that do not support the growth of salmonellae, would have little effect on the incidence of salmonellosis.
The first objective of this study was to develop and validate sufficiently lethal processes for use by commercial jerky manufacturers in heating and drying whole-muscle beef jerky. In working towards this objective, marination and beef strip thickness were standardized based on typical industry practice. A standardized smokehouse loading procedure was used, and ambient weather conditions were noted.

A second objective of this work was to develop a simple method for commercial processors of whole-muscle beef jerky to evaluate the lethality of new processes. Because in-plant challenge studies involving pathogenic bacteria are not recommended for commercial meat processing establishments for safety reasons, and because laboratory-based challenge studies are neither practical nor affordable for most processors, we investigated the use of a commercially available lactic acid bacterial starter culture as a surrogate for *Salmonella* serovars and *E. coli* O157:H7.

MATERIALS AND METHODS

Preparation of inoculum. Five-strain cocktails of *Salmonella* serovars and *E. coli* O157:H7 were used to inoculate beef strips prior to jerky processing. *E. coli* O157:H7 strains ATCC 43894, 51657, and 51658 were clinical isolates and strain ATCC 43895 was originally from ground beef implicated in an outbreak of food-borne illness; each of these strains was obtained from the American Type Culture Collection (Manassas, VA). Strain USDA-FSIS-380-94 was originally from salami implicated in an illness outbreak and was obtained from the laboratory of Dr. John Luchansky at the Food Research Institute, University of Wisconsin-Madison. The *Salmonella* serovars were all obtained from the laboratory of Dr. Eric Johnson at the Food Research Institute,
University of Wisconsin-Madison. To obtain a working culture, each strain was cultured twice successively (from a previously frozen culture) at 35°C for 18-24 hours in Brain Heart Infusion Broth (BHIB; Difco, Becton-Dickenson, Sparks, MD), streaked to Brain Heart Infusion Agar (BHIA; Difco), incubated at 35°C for 18-24 hours, examined for purity, and then stored at 5°C. According to the work of Calicioglu et al. (3 - 5), acid-adaptation is unlikely to increase pathogen resistance to hurdles involved in beef jerky processing. Therefore, cultures for inoculation were grown in Brain Heart Infusion broth (BHIB; Difco, Becton Dickinson, Sparks, MD), a medium containing only a small amount of glucose that could be metabolized to produce organic acids. To achieve stationary-phase inoculum cultures, an isolated colony of each strain was transferred from its working culture plate to 9 mL of BHIB, and incubated at 35°C for 24 hours. To prepare a 5-strain inoculum cocktail of \textit{Salmonella} serovars or \textit{E. coli} O157:H7, the BHIB culture of each strain was combined into one 50-ml sterile plastic centrifuge tube, and centrifuged for 12 minutes at 5,000 x g. The supernatant in each tube was decanted and the pellets were re-suspended with approximately 20 ml of Butterfield’s phosphate diluent (BPD; Nelson Jameson, Marshfield, WI). A commercial lactic acid bacteria starter culture, intended for making fermented meat products, was evaluated in several trials as a surrogate for the pathogens. The starter culture (Formula 100; Trumark, Linden, NJ) was stored at -20°C. Three different lots of this starter culture were tested during the study. Preliminary experiments showed that the starter culture was considerably more thermotolerant than the \textit{Salmonella} and \textit{E. coli} O157:H7 strains used, so a lower inoculum level was used for it. To prepare the starter culture for inoculation
of beef strips, 0.5 g of culture was added to 99 ml BPD, mixed well, and then diluted
another 100-fold in BPD.

Inoculation of beef strips. Frozen vacuum-packaged beef strips were obtained
from a commercial jerky processor and thawed at 4°C or under running tap water prior to
inoculation. The individual beef strips (5 – 7 mm thick) were placed in a biosafety hood
on aluminum foil that had been previously sanitized with 70% (v/v) ethanol. To
inoculate each strip, 0.4 ml of the undiluted pathogen cocktail or 0.4 ml of the diluted
starter culture was pipetted onto the product surface and distributed as evenly as possible
using a sterile plastic spreader. Aluminum foil was placed over the strips in a tented
manner to minimize the amount of drying during microbial attachment (30 min), after
which strips were turned over and the inoculation/attachment process was repeated on the
other side. For each trial, one group of 9 - 12 beef strips was inoculated with *Salmonella*
spp., another group of 9 - 12 beef strips was inoculated with *E. coli* O157:H7, and a third
group of 4 - 6 uninoculated beef strips was used to monitor yield and water activity
throughout thermal processing. In many trials, four additional strips were inoculated with
the starter culture. Initial pathogen levels on inoculated beef strips were approximately
10^8 CFU per beef strip and initial starter culture levels were about 10^4 CFU per beef strip.

Jerky processing. Each group of beef strips was tumbled manually in a closed
zip-lock plastic bag for approximately 5 minutes in a non-acidic (pH 5.3) spice-
containing marinade applied at a level of 15% (w/w; 9.7% water and 5.3% dry
ingredients) intended to result in a pre-processing level of 2% (w/w) sodium chloride, 2%
(w/w) sucrose, and 156 ppm sodium nitrite (w/w) in the meat. Following marination,
strips were held for 22-24 h at 5°C. The next day, strips were arranged on racks placed in
the center of a commercial one-truck smokehouse (Model TR2, Vortron, Beloit, WI) for processing. Pans of water were placed on the lowest rack in the smokehouse and a low fan speed was used to simulate as much as possible a drying rate consistent with a smokehouse containing several racks filled with product. The smokehouse dry-bulb and wet-bulb temperatures were monitored using thermocouples (L#113-1055 P/M, ThermoWorks, Alpine, UT) and a data logger (Model 92000-00, Barnant Co., Barrington, IL). Percent relative humidity (%RH) was calculated from the wet-bulb and dry-bulb temperatures using a slide rule (Alkar, Lodi, WI). In all trials, the product-internal temperature was measured by inserting a thermocouple probe into the geometric center of a beef strip. Because insertion of the probe in this location is relatively difficult, a surrogate product-internal temperature was also obtained by tightly folding a beef strip once over a thermocouple probe in the majority of the trials. The latter temperature measurement method is considerably easier, but it was not known at first whether it could be considered an accurate surrogate for internal beef strip temperature. Smoke was not applied to the beef strips during processing. Several types of heating/drying processes were tested (summarized in Table 1). In Type 1-A processes, the dry-bulb temperature controller was set at 62.8°C (145°F) in the first 15 minutes and then at 76.7°C (170°F) during the next 15 minutes, with no added humidity. This two-step increase in dry-bulb temperature was done to simulate the beginning stages of heating a full smokehouse of moist, ambient-temperature beef strips. Next, humidity (steam or water) was introduced into the smokehouse via the wet-bulb temperature controller to obtain targeted increases in wet-bulb temperatures, referred to as “wet-bulb spikes”. The process lethality was determined for a series of trials conducted using early-process wet-bulb spikes of 51.7°C
(125°F) for 60 min, 54.4°C (130°F) for 60 min., 57.2°C (135°F) for 30 min., and 60°C
(140°F) for 10 min. Following completion of wet-bulb spikes, no further humidity was
introduced into the smokehouse chamber as the product was further dried at a dry-bulb
temperature of 76.7°C (170°F). To investigate the possible protective or lethal effects of
marinade ingredients, a selected Type 1 process (wet bulb spike of 54.4°C for 60
minutes) was done to products that were marinated either only in water (9.7% initial
product weight gain) or only in the dry ingredients (5.3% initial product weight gain). In
four trials, a Type 1-B process was used (wet-bulb spike of 54.4°C for 60 minutes) in
which the dry-bulb temperature was held at either 65.5°C (150°F) or 87.8°C (190°F)
throughout a 15-minute equilibration period before the wet-bulb spike, the wet-bulb spike
itself, and final drying. Type 2 and Type 3 processes involved rapid (15 minutes) and
slow (90 minutes) increases in dry-bulb temperature to 76.7 °C (170°F) followed by final
drying at a dry-bulb temperature of 76.7°C (170°F). In Type 4 processes, the dry-bulb
temperature was held constant at 51.7°C (125°F) until a desired approximate jerky water
activity was attained, whereupon the dry-bulb temperature was increased to 76.7°C
(170°F) for final drying (no humidity added during the process). In Type 5 processes, the
dry-bulb temperature was held constant at 60, 71.1, or 82.2°C (140, 160, or 180°F) and
no attempt was made to control wet-bulb temperature. Type 6 and 7 processes both
involved sequential 1 hour exposures to dry-bulb temperatures of 48.9, 54.4, and 60°C
(120, 130, and 140°F); in the Type 7 process beef strips were exposed an additional hour
to a dry-bulb temperature of 76.7°C (170°F). In addition to trials in the commercial-scale
smokehouse, a consumer-scale smokehouse (Pragotrade Model TS160, Cabela’s, Sidney,
NE) was used for additional trials testing the relationship between thermally induced
death of the starter culture surrogate and inoculated pathogens (“consumer-type process”). Inoculated and uninoculated beef strips were placed on two racks in this smokehouse, two large (15 cm diameter) Petri dishes containing water were placed on the floor of the smokehouse, and the dry-bulb temperature was set at either 60 or 70.1°C (140 or 160°F). These trials were done to compare pathogen and starter culture surrogate survival over a broad range of conditions. In all trials, uninoculated strips were evaluated at the intermediate sampling point for water activity (measured on-site using an AquaLab Series 3TE water activity meter, Decagon Devices, Inc., Pullman, WA). In all trials, additional uninoculated finished beef jerky strips were sent to a commercial testing laboratory for pH, water activity, % water (forced air oven method, AOAC method 950.46Bb), % protein (Kjeldahl method, AOAC method 991.20.1), and % salt (potentiometric method, AOAC method 980.25). From these analyses, Moisture: Protein ratio (MPR), and % water-phase salt values were calculated.

Enumeration of inoculum organisms. The numbers of *Salmonella* spp. and *E. coli* O157:H7 on beef strips were determined prior to marination, after marination (in 21 trials), after the early-process wet-bulb spike in the smokehouse (Type 1 process) or some other intermediate time (other process types), and following drying when the beef strips had reached a yield level predetermined to correlate with an average water activity of ≤ 0.90. One beef strip comprised a sample and three samples were analyzed for pathogen numbers at each sampling time. In several trials, two strips each were analyzed for starter culture numbers after inoculation and at the end of drying. Each sample was placed in a whirl pak filter bag (Nasco, Fort Atkinson, WI), BPD (99 ml) was added, and
the bag contents were stomached for 2 minutes at medium speed (Stomacher 400
Circulator lab blender; Seward) or samples were manually massaged for 1 minute and
shaken for 1 minute. This initial dilution was arbitrarily defined as 10^{-1}. Serial decimal
dilutions were made in BPD as needed. From the initial dilution, 1.0 ml was distributed
for spread-plating among three plates of BHIA. From the original dilution and each
subsequent dilution 0.1 ml was spread on one BHIA plate per dilution. Plates were
incubated at 35°C for 1 h to allow for repair of injured cells, and then overlaid with
MacConkey Sorbitol agar (SMAC; Difco), XLD agar (Difco), or mEnterococcus agar
(mE; Difco) for selective/differential enumeration of *E. coli* O157:H7, *Salmonella*
serovars, and starter culture surrogate, respectively. After 20-24 h (*E. coli* O157:H7,
Salmonella serovars) or 72 h (starter culture surrogate) incubation at 35°C, plates were
examined for typical colonies. For each sampling time, one presumptive colony each of
E. coli O157:H7 and *Salmonella* was transferred to BHIA, incubated at 35°C for 20-24 h,
and then tested to confirm colony identity. A single plate containing presumptive starter
culture colonies was retained for confirmation tests at each sampling time. Confirmation
tests for the presumptive pathogens were Gram reaction, cellular morphology, oxidase
activity, and biochemical characteristics (API 20E kit, bioMerieux, Hazelwood, MO) for
the pathogens, with an additional O157 latex agglutination test (Oxoid, Ogdensburg, NY)
done to confirm *E. coli* O157:H7 isolates. Presumptive starter culture surrogate colonies
were evaluated for Gram reaction, cellular morphology, and catalase activity. The log
CFU for a given inoculum organism was calculated for each sample with a mean log
CFU calculated for each sampling time. A value of 9 CFU (0.95 log CFU) was assigned
when no colonies were present for the least dilute plating.
Weather data. Because outdoor weather conditions, particularly temperature and relative humidity, were believed to have a potentially important effect on jerky processing lethality, the dewpoint at noon in Madison, WI, on the day of each trial was obtained from meteorological archives (http://www.channel3000.com/weather/index.html).

RESULTS AND DISCUSSION

Finished jerky made in the present study had a pH of 5.6 – 6.1, with 22 of 30 samples having pH of 5.7 – 5.9. The water activity, MPR, and % water-phase salt varied widely, as expected, given the range of heating and drying conditions evaluated. When the normal marination and a Type 1 process were used, the ranges of finished product water activity, MPR, and % water-phase salt were 0.78 - 0.93, 0.52 – 0.95, and 7.9 – 16.6, respectively. In contrast, the Type 1 product made with no spices had water activity, MPR, and % water-phase salt of 0.94 – 0.96, 0.63 – 0.65, and 0.60 – 0.70, respectively. Type 1 product marinated only with spices had a water activity, MPR, and % water-phase salt of 0.86 – 0.87, 0.67- 0.68, and 11.1 – 11.5, respectively. Products made using the normal marination procedure and any of the Type 2 - 7 processes had compositional values similar to those for Type 1 processes with the exception of product from one Type 2 and three Type 3 processes that had water activity, MPR, and % water-phase salt ranges of 0.64 – 0.75, 0.41 – 0.66, and 11.2 – 17.1, respectively. It should be noted that in many trials achieving sufficient lethality, the finished product water activity and MPR were higher (and the % water-phase salt was lower) than desired for optimum consumer.
acceptance and required in USDA labeling standards (12). However, processors using
the same heating/drying processes could simply extend the drying period to obtain
desired product characteristics. This extended drying would have no adverse effect on
lethality and might, in some situations, increase it.

In 21 trials, pathogen numbers were determined following the 22-24-hour post-
marination refrigerated storage step. Numbers of *Salmonella* serovars and *E. coli*
O157:H7 fell by 0.04 – 0.43 and 0.04 – 0.34 log CFU, respectively. We concluded that
this marination step had little lethality, and discontinued post-marination sampling.

Throughout the study, consistent trends in dry-bulb, wet-bulb, product-internal,
and surrogate product-internal (beef strip folded over probe) temperatures were observed.
As shown for a typical Type 1 process (Figure 1), wet-bulb temperature was initially well
below dry-bulb temperature. Product-internal temperature was always similar to the wet-
bulb temperature early in the process and could effectively serve as an estimate of wet-
bulb temperature until later in the process. At some time, though, evaporative cooling of
the strips diminished and the product-internal temperature rose toward the dry-bulb
temperature. It is important to note that throughout the jerky heating/drying process,
product-internal temperature was always close to (within 1°C) or higher than the chamber
wet-bulb temperature. Thus, maintaining the chamber wet-bulb temperature (and thereby
the product temperature) high enough to cause pathogen destruction (ca. 51.7°C/125°F
and higher) can strongly influence process lethality. Early in the heating/drying process,
the surrogate product-internal temperature, measured with a jerky strip folded over the
thermocouple, was often lower than the product-internal temperature because the applied
heat had to pass through twice the thickness of meat in the folded strip. Later in the
process, the surrogate product-internal temperature rose above the product-internal temperature, presumably because the greater meat thickness with the folded strip diminished evaporative cooling near the thermocouple. By the end of the process, when little evaporative cooling still was occurring, the two temperatures were the same. The divergence of the two temperatures by a variable amount during much of the process calls into question the practice of using the surrogate product-internal temperature for overall process control or evaluation. However, the surrogate product-internal temperature was very close to the product-internal temperature early in processing and during the wet-bulb temperature spikes in Type 1 processes, and could be useful in early-process control or evaluation.

Earlier research has established the fact that sub-lethal drying can make pathogens such as Salmonella serovars more resistant to heat (7). This phenomenon was likewise observed in several early jerky-making trials (data not shown). Therefore, several early-process wet-bulb temperature spikes were applied to determine the extent of elevated-humidity heating conditions necessary to achieve desired lethality while maintaining product quality (Table 2). During the 54.4, 57.2, and 60°C (130, 135, and 140°F) wet-bulb spikes with concurrent 76.7°C (170°F) dry-bulb temperature, the product-internal temperature was generally quite similar to the wet-bulb temperature. However, during the 54.4°C (130°F) wet-bulb spike with a concurrent 87.8°C (190°F) dry-bulb temperature, the product-internal temperature rose faster than it did during the wet-bulb spike treatments conducted with 76.7°C (170°F) dry-bulb temperature, and the product-internal temperature reached at least 5°C higher (Figure 2) than in the latter process (Figure 1). This more rapid increase in product temperature resulted from faster jerky
Lethality of Commercial Beef Jerky Manufacturing Processes

drying at the lower %RH under 87.8°C (190°F) dry-bulb/54.4°C (130°F) wet-bulb
temperature conditions (see % RH values in Table 2). Similarly, when a wet-bulb
temperature spike of 51.7°C (125°F) was applied concurrently with 76.7°C (170°F) dry-
bulb temperature, the %RH was lower than under 54.4°C (130°F) wet-bulb/76.7°C
(170°F) temperature conditions. This lower %RH led to a faster increase in product-
internal temperature and a more rapid achievement of a ≥ 5.0 log reduction in
salmonellae numbers (see first four lines of Table 2).

Presently, the USDA has indicated that a jerky-making process has sufficient
lethality if it results in a 5-log reduction of Salmonella serovars. However, USDA
guidance for certain other beef products specified a 6.5 log reduction in Salmonella
serovars. All tested Type 1 processes (early-process wet-bulb temperature spike
following the standard marination process) resulted in a ≥ 6.4 log reduction in both
pathogens by the end of the complete process (including final drying; Table 2). Three
Type 1 processes achieved a ≥ 5.2 log reduction in Salmonella serovars but caused
smaller decreases in E. coli O157:H7 numbers at the end of the wet-bulb temperature
spike (Table 1). These treatments were 51.7°C (125°F) for 60 min, 57.2°C (135°F) for
30 min, and 60°C (140°F) for 10 min. However, a ≥ 6.4 log reduction of both Salmonella
serovars and E. coli O157:H7 was achieved by the end of drying after each of these
processes. One Type 1 process did not cause a > 5.0 log reduction in either pathogen by
the end of the web-bulb spike but subsequent drying resulted in sufficient overall
lethality. This treatment, wet-bulb temperature of 54.4°C (130°F) for 60 minutes,
resulted in decreases of 3.2 – 3.9 and 2.0 – 2.1 log CFU for Salmonella serovars and E.
coli O157:H7, respectively. By the end of drying after these treatments, reductions of ≥
6.9 logs had occurred for both pathogen species. The overall effectiveness of these Type 1 processes appeared to result from the fact that product temperature was controllable via control of wet-bulb temperature and was increased rapidly to levels at which pathogens were killed while the beef strips were still moist enough to achieve high lethality. It is of interest to note that the time for which the wet-bulb temperature was elevated, i.e. the duration of the wet-bulb temperature spike, was generally shorter than the corresponding times for the same wet-bulb temperatures listed in USDA guidance (15) for the cooking of beef. The latter times were 112 minutes at 54.4°C (130°F), 36 minutes at 57.2°C (135°F), and 12 minutes at 60°C (140°F). By comparison, times used in the present study were 60, 30, and 10 minutes, respectively.

The dry-bulb temperature during a Type 1 process was found to have a major effect on process lethality. The application of a wet-bulb temperature spike of 54.4°C (130°F) for 60 minutes with a concurrent dry-bulb temperature of 65.5°C (150°F; Figure 3) reduced *Salmonella* serovar populations by 4.9 – 5.0 log CFU, but only resulted in 3.2 – 3.6 log reductions in numbers of *E. coli* O157:7 (Table 2) without further drying. Subsequent drying at 65.5°C (150°F), however, did lead to overall ≥ 6.7 log CFU reductions for both pathogens. These final-sampling results were not noticeably different than results obtained with the same wet-bulb temperature applied with a concurrent dry-bulb temperature of 76.7°C (170°F), perhaps because pathogen populations following both types of process had fallen below the detection limit. When the concurrent dry-bulb temperature was increased to 87.8°C (190°F), though, the wet-bulb temperature spike caused a ≥ 6.5 log CFU reduction of both pathogens before final drying was even begun (Table 2).
Although USDA guidance (14) recommended 90% relative humidity (RH) during the early heating period in jerky processing, it also stated that such a high humidity may not be necessary if alternative procedures are validated. In the Type 1-A processes conducted here using a dry-bulb temperature of 76.7°C (170°F), the calculated RH for early-process wet-bulb temperature spikes was 27 - 43% RH. When followed by drying at 76.7°C (170°F), these processes were sufficient to provide ≥ 6.4 log reduction in numbers of *Salmonella* serovars and *E. coli* O157:H7. Taking into account current USDA expectations for jerky processing lethality, processors using the Type 1 process conditions employed in this study [achieving 76.7°C (170°F) dry-bulb temperature within 30 minutes and maintaining this temperature throughout processing] could employ any of the early-process wet-bulb spike treatments listed in Table 1 followed by drying at 76.7°C (170°F) as scientifically validated processes for making safe whole-muscle beef jerky.

Lethality was compared for several different Type 1 processes at a common wet-bulb temperature spike time of 60 minutes. The relevant processes were 51.7°C (125°F) or 54.4°C (130°F) wet-bulb temperature spikes with concurrent 76.7°C (170°F) dry-bulb temperature, and 54.4°C (130°F) wet-bulb temperature spikes with 65.5°C (150°F) or 87.8°C (190°F) dry-bulb temperatures. The 60-minute lethality for *Salmonella* serovars for these processes averaged 5.4, 3.5, 4.9, and 6.6 logs, respectively (Table 2). Corresponding values for *E. coli* O157:H7 were 4.7, 2.1, 3.4, and 7.1 logs, respectively. The reason for the highest lethality during the 51.7°C (125°F) wet-bulb spike (76.7°C dry-bulb temperature) and the 54.4°C (130°F) wet-bulb temperature spike with 87.8°C dry-bulb temperature (Figure 2) is that both these processes resulted in a
Lethality of Commercial Beef Jerky Manufacturing Processes

lower environmental relative humidity, and a more rapid increase in product temperature
to lethal levels early in the process while there was still sufficient product moisture for
enhanced lethality.

Separate trials were conducted with a Type 1-A process to evaluate the relative
importance of the marinade components in achieving desired process lethality. Results
showed that omission of either water or dry ingredients from the marinade led to
somewhat greater reductions in pathogen numbers after a 54.4°C (130°F)/60 minute wet-
bulb temperature spike (Table 2) but comparable lethality after the subsequent drying.
Whole-muscle beef jerky prepared without the addition of salt, however, had a much
higher water activity when trials were completed. We concluded that the choice of water
level in the jerky marinade used in this study (and hence the amount of marinade pick-up)
or the addition of only dry marinade ingredients was not a critical factor in attaining
desired process lethality.

The Type 2 process involving a rapid (15 min) increase in dry-bulb temperature to
76.7°C (170°F) achieved greater pathogen destruction than the Type 3 process in which
dry-bulb temperature did not increase to 76.7°C (170°F) until after 90 minutes (Table 3).
However, both of these processes did result in pathogen reductions exceeding 5.0 log
CFU after drying was completed. An alternative approach that some processors may
elect to use is to initially heat beef strips at the relatively moderate dry-bulb temperature
of 51.7°C (125°F) for a short period of time followed by heating/drying of the strips at a
the relatively high dry-bulb temperature of 76.7°C (170°F). The rationale for this
approach (Type 4 process) is that the short initial heating imparts desirable product
characteristics without increasing pathogen thermotolerance via sublethal stress. As seen

Buege et al., Lethality of Commercial Jerky Manufacturing Processes. Submitted to 18
Journal of Food Protection 11 November 2005
in Table 4, the success of a Type 4 process depends on beginning the high-temperature
drying when the product water activity is still relatively high. When drying was begun at
a product water activity of 0.72 or 0.81, the reduction in *Salmonella* serovars was 4.7 log
CFU. Reductions in numbers of *E. coli* O157:H7 in these trials were 5.4 log CFU,
however. When drying was begun at product water activity of 0.86, 0.87, 0.95, or 0.96,
the reduction in both pathogens was 4.9 – 6.7 log CFU. Although such a process clearly
provided less of a safety margin than using a Type 1 process (wet-bulb temperature
spike), it is likely that short-term heating at a low dry-bulb temperature such as 51.7°C
followed by 76.7°C (dry-bulb temperature) drying could achieve sufficient lethality if the
drying is begun when product water activity is ≥ 0.86.

Heating whole-muscle beef strips at a constant dry-bulb temperature of either 60
or 71.1°C (140 or 160°F) without the addition of humidity (Type 5 processes) did not
achieve USDA-mandated lethality even when product was dried to water activity levels
typical of commercial beef jerky (Table 5). These processes resulted in decreases in
Salmonella serovars and *E. coli* O157:H7 of 3.8 – 4.7 and 3.9 – 4.0 logs, respectively.
Heating at a constant dry-bulb temperature of 82.2°C (180°F) did result in a reduction of
just over 5 log CFU for both pathogens. The cause of the lower lethality in Type 5
processes can be induced from Figure 4. As can be seen, the wet-bulb temperature and
product-internal temperature remained at sub-lethal levels for long periods of time,
allowing pathogen survival during the drying that took place. The surviving cells
apparently had enhanced thermotolerance during subsequent heating, as previously
described (7). Three Type 5 process trials were conducted on winter days with very low
noon dewpoint temperatures (-11, -12, -14°C) and one trial (60°C/140°F dry-bulb
temperature) was done in mid-July (noon dewpoint temperature of 20°C). Although it is possible that using a constant dry-bulb temperature process could attain more lethality than in the present study if it was employed in very humid weather, we observed no clear relationship between outdoor dew point and process lethality. We may have mitigated any weather effects, though, by adjusting process drying times to attain an acceptable reduction in water activity. Furthermore, our trials were conducted in a climate-controlled building. Processors with a lower degree of humidity control may need to adjust process parameters to account for weather extremes.

The Type 6 process that had a slow increase in dry-bulb temperature to a maximum of 60°C (140°F) did not cause more than a 3 log CFU reduction in pathogens. In contrast, the Type 7 process which had final 1-hour exposure to dry-bulb temperature of 76.7°C (170°F) caused > 5 log CFU decreases in pathogen numbers (Table 3).

The starter culture tested in 19 trials as a pathogen surrogate survived the jerky-making process considerably better than either of the tested pathogens (Table 6). When the starter culture population was reduced by at least 3.0 log CFU (nine trials), the populations of both pathogens decreased by at least 5.0 log CFU in eight of the trials. In the one exception, the *E. coli* O157:H7 population decreased by 5.0 log CFU and the population of *Salmonella* serovars was reduced by 4.7 log CFU. In contrast, when the starter culture population was reduced by < 3.0 log CFU (10 trials), pathogen populations were considerably less likely to decrease by at least 5.0 log CFU. *Salmonella* serovar and *E. coli* O157:H7 levels decreased by < 5.0 log CFU in four and three of these trials, respectively. We conclude that use of this starter culture surrogate with a target lethality
of at least 3.0 log CFU could be a useful tool for processors validating their whole-
muscle beef jerky processes.

On the basis of our results, we conclude that of the two pathogens studied, *E. coli*
O157:H7 is better able to survive the heating and drying steps used in making whole-
muscle beef jerky. However, foodborne illness outbreaks linked to beef jerky have
primarily involved *Salmonella* serovars, so it is prudent for any validation of a jerky-
making process to involve both pathogens. Because our results clearly show the
importance of wet-bulb temperature in achieving mandated lethality, we strongly
recommend that processors buy or make a wet-bulb thermometer for use in processing, or
use a hygrometer to monitor humidity and then use a commercially available slide rule to
determine wet-bulb temperature from known dry-bulb temperature and %RH values.

Reductions in *Salmonella* serovars and *E. coli* O157:H7 of > 5.0 log CFU can be
achieved in the production of whole-muscle beef jerky by ensuring that high enough wet-
bulb temperatures are reached and maintained early in the process (Type 1 processes) or
that high dry-bulb temperature heating and drying is done before the beef strip water
activity has fallen below 0.86 (Type 2, 3, 4, and 7 processes). Alternatively, guidance
from USDA (14) has indicated that internal temperatures listed in USDA-accepted
“Appendix A” time/temperature combinations (15) are effectively wet-bulb temperatures.
Processors could consider a process valid in which the smokehouse wet-bulb temperature
and, therefore the product-internal temperature, was at or above a designated level for a
time at least as long as specified in Appendix A.
ACKNOWLEDGEMENTS

The authors gratefully acknowledge the laboratory assistance of Ryan Algino, Greg Burnham, Rebecca Engel, Melody Fanslau, Amy Haen, Erica Ready, Erica Schoeller, and Melissa Talbot. The authors also acknowledge the smokehouse assistance of Ruben Zarraga. This work was supported by a grant from the United States Department of Agriculture, Food Safety & Inspection Service.

REFERENCES

Lethality of Commercial Beef Jerky Manufacturing Processes

13. United States Department of Agriculture, Food Safety & Inspection Service.
2005b. Risk assessment of the impact of lethality standards on salmonellosis from ready-to-eat meat and poultry products; draft for public review and comment.
accessed 21 July 2005

2004. Compliance guideline for meat and poultry jerky produced by small and very small plants.

15. United States Department of Agriculture Food Safety and Inspection Service.
1999. Compliance guidelines for meeting lethality performance standards for certain meat and poultry products, Appendix A. Available at:
FIGURE LEGENDS

1. Wet-bulb, dry-bulb, and product-internal temperatures during the manufacture of whole-muscle beef jerky by a Type 1-A process with a 54.4°C / 130°F, 60-minute wet-bulb temperature spike.

2. Wet-bulb, dry-bulb, and product-internal temperatures during the manufacture of whole-muscle beef jerky by a Type 1-B process with a dry-bulb temperature setting of 87.8°C / 190°F.

3. Wet-bulb, dry-bulb, and product-internal temperatures during the manufacture of whole-muscle beef jerky by a Type 1-B process with a dry-bulb temperature setting of 65.5°C / 150°F.

4. Wet-bulb, dry-bulb, and product-internal temperatures during the manufacture of whole-muscle beef jerky by a Type 5 process with a dry-bulb temperature setting of 60.0°C / 140°F.
Table 1. Summary of heating/drying processes used to make whole-muscle beef jerky.

<table>
<thead>
<tr>
<th>Process</th>
<th>Dry-Bulb (Controlled)</th>
<th>Wet-Bulb (Controlled)</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Temperature (°C/°F)</td>
<td>Time (min)</td>
<td>Temperature (°C/°F)</td>
</tr>
<tr>
<td>1-A</td>
<td>62.8 / 145</td>
<td>15</td>
<td>Not Controlled = NC</td>
</tr>
<tr>
<td>1-B</td>
<td>62.8 / 145</td>
<td>15</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>76.7 / 170</td>
<td>15</td>
<td>51.7 / 125</td>
</tr>
<tr>
<td></td>
<td>then 76.7 / 170</td>
<td>60</td>
<td>54.4 / 130</td>
</tr>
<tr>
<td></td>
<td>OR 76.7 / 170</td>
<td>60</td>
<td>57.2 / 135</td>
</tr>
<tr>
<td></td>
<td>OR 76.7 / 170</td>
<td>10</td>
<td>60 / 140</td>
</tr>
<tr>
<td></td>
<td>OR 87.8 / 190</td>
<td>15</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>then 87.8 / 190</td>
<td>15</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>87.8 / 190</td>
<td>60</td>
<td>54.4 / 130</td>
</tr>
<tr>
<td></td>
<td>varied (to targeted</td>
<td>NC</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>final product dryness)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>final product dryness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>62.8 / 145</td>
<td>15</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>76.7 / 170</td>
<td>varied (to targeted final product dryness)</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>62.8 / 145</td>
<td>90</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>76.7 / 170</td>
<td>varied (to targeted final product dryness)</td>
<td>NC</td>
</tr>
<tr>
<td>4</td>
<td>51.7 / 125</td>
<td>varied (to targeted final product dryness)</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>60 / 140</td>
<td>varied (to targeted final product dryness)</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>71.1 / 160</td>
<td>varied (to targeted final product dryness)</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>82.2 / 180</td>
<td>varied (to targeted final product dryness)</td>
<td>NC</td>
</tr>
</tbody>
</table>
Lethality of Commercial Beef Jerky Manufacturing Processes

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>48.9 / 120</td>
<td>60</td>
<td>NC</td>
</tr>
<tr>
<td>2</td>
<td>54.4 / 130</td>
<td>60</td>
<td>NC</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>60 / 140</td>
<td>60</td>
<td>NC</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>48.9 / 120</td>
<td>60</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>54.4 / 130</td>
<td>60</td>
<td>NC</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>60 / 140</td>
<td>60</td>
<td>NC</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>76.7 / 170</td>
<td>60</td>
<td>NC</td>
<td>---</td>
</tr>
</tbody>
</table>
Lethality of Commercial Beef Jerky Manufacturing Processes

Table 2. Process lethality against \textit{Salmonella} serovars (S) and \textit{Escherichia coli} O157:H7 (EC) during Type 1 - A and 1 - B processing (wet-bulb temperature spike = WBS; followed by post-spike drying at 76.7°C = PSD) of whole muscle beef jerky.

Type 1 – A	Strips marinated with water and dry ingredients	Lethality as determined after dry-bulb temperature at 76.7°C during wet-bulb spike.											
(°C)	(min)	(min)	(°C)	(min)			(°C)	(min)					
9	51.7	60	27	60	5.6	5.6	6.5	6.7	0.87	0.81	60.5	70.0	
10	51.7	60	27	60	5.2	3.8	6.4	7.1	0.89	0.78	56.1	65.0	
11	54.4	60	32	120	3.2	2.0	6.9	7.1	0.93	0.88	54.4	63.9	
12	54.4	60	32	120	3.9	2.1	6.9	7.0	0.92	0.87	55.0	64.4	
13	57.2	30	37	120	6.4	2.7	7.0	7.1	ND	0.86	58.3	63.9	
14	57.2	30	37	90	5.3	3.1	7.0	7.1	0.93	0.90	57.8	66.1	
15	60	10	43	120	6.2	3.8	7.0	7.2	0.96	0.90	58.9	67.8	
16	60	10	43	120	6.7	2.2	6.8	7.0	0.96	0.84	60.0	62.8	
Type 1 – B	Dry-bulb temperature at 65.5°C during wet-bulb spike												
18	54.4	60	56	90	4.9	3.2	6.7	7.1	0.95	0.85	55.6	57.2	
19	54.4	60	56	150	5.0	3.6	6.9	6.9	0.97	0.91	55.0	57.8	
Type 1 – B	Dry-bulb temperature at 87.8°C during wet-bulb spike												
21	54.4	60	19	30	6.7	7.3	7.0	7.4	0.93	0.89	66.7	71.1	

Buege et al., Lethality of Commercial Jerky Manufacturing Processes. Submitted to Journal of Food Protection 11 November 2005
Lethality of Commercial Beef Jerky Manufacturing Processes

<table>
<thead>
<tr>
<th></th>
<th>54.4</th>
<th>60</th>
<th>19</th>
<th>45</th>
<th>6.5</th>
<th>6.9</th>
<th>7.2</th>
<th>7.1</th>
<th>0.95</th>
<th>0.89</th>
<th>65.0</th>
<th>73.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Type 1 – A</td>
<td>Strips marinated only with water</td>
<td>Dry-bulb temperature at 76.7°C during wet-bulb spike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54.4</td>
<td>60</td>
<td>32</td>
<td>60</td>
<td>5.6</td>
<td>4.9</td>
<td>6.6</td>
<td>6.9</td>
<td>0.98</td>
<td>0.94</td>
<td>55.6</td>
<td>63.9</td>
</tr>
<tr>
<td>4</td>
<td>54.4</td>
<td>60</td>
<td>32</td>
<td>60</td>
<td>5.4</td>
<td>4.5</td>
<td>6.1</td>
<td>7.0</td>
<td>0.99</td>
<td>0.96</td>
<td>55.6</td>
<td>64.4</td>
</tr>
<tr>
<td>5</td>
<td>Type 1 – A</td>
<td>Strips marinated only with dry ingredients</td>
<td>Dry-bulb temperature at 76.7°C during wet-bulb spike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>54.4</td>
<td>60</td>
<td>32</td>
<td>90</td>
<td>5.9</td>
<td>3.9</td>
<td>7.1</td>
<td>7.0</td>
<td>0.95</td>
<td>0.87</td>
<td>57.2</td>
<td>66.7</td>
</tr>
<tr>
<td>7</td>
<td>54.4</td>
<td>60</td>
<td>32</td>
<td>60</td>
<td>5.6</td>
<td>6.9</td>
<td>6.6</td>
<td>7.1</td>
<td>0.93</td>
<td>0.86</td>
<td>58.9</td>
<td>68.3</td>
</tr>
</tbody>
</table>

a Reduction in log CFU per sample relative to initial pathogen load prior to marination.
b Percent relative humidity during wet-bulb temperature spike calculated from wet-bulb and dry-bulb temperature settings using a slide rule.
ND = Not Determined
Lethality of Commercial Beef Jerky Manufacturing Processes

Table 3. Process lethality against *Salmonella* serovars (S) and *Escherichia coli* O157:H7 (EC) during the type 4, 5, 6, and 7 processes for heating and drying of whole-muscle beef jerky. Processes were 2 = fast come-up [15 minutes to reach dry-bulb temperature of 76.7°C (170°F), followed by drying at 76.7°C], 3 = slow come-up [90 minutes to reach dry-bulb temperature of 76.7°C (170°F), followed by drying at 76.7°C], 6 = 1 hour each at dry-bulb temperatures of 48.9, 54.4, and 60°C (120, 130, and 140°F), or 7 = 1 hour each at dry-bulb temperatures of 48.9, 54.4, 60, and 76.7°C (120, 130, 140, and 170°F). No humidity was added to the smokehouse chamber during processing.

<table>
<thead>
<tr>
<th>Process</th>
<th>Lethality (reduction in log CFU)(^a) and product characteristics at Intermediate Time</th>
<th>End</th>
<th>Product – internal</th>
<th>Product - internal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment</td>
<td>RH(^b) (min)</td>
<td>S</td>
<td>EC</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>31 - 17</td>
<td>60</td>
<td>3.3</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>27 - 21</td>
<td>60</td>
<td>2.6</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>41 - 21</td>
<td>90</td>
<td>2.0</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>41 - 24</td>
<td>120</td>
<td>1.6</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>43 - 15</td>
<td>180</td>
<td>3.5</td>
</tr>
</tbody>
</table>

\(^{a}\) Reduction in log CFU per sample relative to initial pathogen load prior to marination.
Lethality of Commercial Beef Jerky Manufacturing Processes

Percent relative humidity, change during process (initial value – final value). Values calculated from wet-bulb and dry-bulb temperatures using a slide rule.

Water activity.
Table 4. Process lethality against *Salmonella* serovars (S) and *Escherichia coli* O157:H7 (EC) during the Type 4 process of heating of whole-muscle beef jerky at a constant dry-bulb temperature of 51.7°C (125°F) to attain a desired water activity followed by drying at 76.7°C (170°F). No humidity was added to the smokehouse chamber during processing.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>RH</th>
<th>Heating Lethality (reduction in log CFU)(^a) and product characteristics at End of heating</th>
<th>End of drying</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Product - internal</td>
<td>Cumul. Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cumul. Time</td>
<td>Temperature (^\circ)C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature (^\circ)C</td>
</tr>
<tr>
<td>240</td>
<td>ND</td>
<td>0.72 47.2 3.3 3.1</td>
<td>300 0.65 74.4 4.7 5.4</td>
</tr>
<tr>
<td>240</td>
<td>32 – 33</td>
<td>0.81 42.8 3.3 2.7</td>
<td>300 0.75 70.0 4.7 5.4</td>
</tr>
<tr>
<td>180</td>
<td>30 - 36</td>
<td>0.86 42.8 3.2 2.2</td>
<td>240 0.67 68.3 5.8 5.0</td>
</tr>
<tr>
<td>270</td>
<td>ND</td>
<td>0.87 45.6 4.3 2.9</td>
<td>330 0.82 71.7 5.8 6.7</td>
</tr>
<tr>
<td>120</td>
<td>33 - 38</td>
<td>0.95 37.8 1.8 1.7</td>
<td>240 0.83 67.8 4.9 5.7</td>
</tr>
<tr>
<td>120</td>
<td>35 - 38</td>
<td>0.96 38.9 2.1 1.9</td>
<td>225 0.82 70.0 5.6 5.9</td>
</tr>
</tbody>
</table>

\(^a\) Reduction in log CFU per sample relative to initial pathogen load prior to marination.

\(^b\) Percent relative humidity, change during process (initial value – final value). Values calculated from wet-bulb and dry-bulb temperatures using a slide rule.

\(^c\) Water activity.
Lethality of Commercial Beef Jerky Manufacturing Processes

1 ND = Not Determined.
Lethality of Commercial Beef Jerky Manufacturing Processes

Table 5. Process lethality against *Salmonella* serovars (S) and *Escherichia coli* O157:H7 (EC) during the Type 5 process of heating and drying of whole-muscle beef jerky at a constant dry-bulb temperature of 60, 65.5, or 82.2°C (140, 160, or 180°F). No humidity was added to the chamber during processing.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>RH<sup>b</sup></th>
<th>Intermediate Time (min)</th>
<th>Final Time (min)</th>
<th>Dry-Bulb Lethality (reduction in log CFU)<sup>a</sup> and product characteristics at</th>
<th>Product – internal</th>
<th>Product - internal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>32 – 24</td>
<td>90</td>
<td>120</td>
<td>4.3</td>
<td>3.8</td>
<td>0.73</td>
</tr>
<tr>
<td>60</td>
<td>28 - 26</td>
<td>90</td>
<td>120</td>
<td>1.9</td>
<td>1.6</td>
<td>0.96</td>
</tr>
<tr>
<td>71.1</td>
<td>34 - 18</td>
<td>60</td>
<td>75</td>
<td>4.0</td>
<td>3.3</td>
<td>0.87</td>
</tr>
<tr>
<td>82.2</td>
<td>29 - 15</td>
<td>60</td>
<td>75</td>
<td>5.2</td>
<td>4.6</td>
<td>0.72</td>
</tr>
</tbody>
</table>

^a Reduction in log CFU per sample relative to initial pathogen load prior to marination.

^b Percent relative humidity, change during process (initial value – final value). Values calculated from wet-bulb and dry-bulb temperatures using a slide rule.

^c Water activity.
Table 6. Comparison of *Salmonella* serovar (S), *Escherichia coli* O157:H7 (EC), and starter culture surrogate (SC) death during various processes for making whole-muscle beef jerky.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Lethality (reduction in log CFU)² for Finished Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
</tr>
<tr>
<td>Consumer</td>
<td>4.4</td>
</tr>
<tr>
<td>Consumer</td>
<td>4.2</td>
</tr>
<tr>
<td>1-A</td>
<td>7.0</td>
</tr>
<tr>
<td>1-B; 87.8°C dry-bulb</td>
<td>7.0</td>
</tr>
<tr>
<td>1-B; 87.8°C dry-bulb</td>
<td>7.2</td>
</tr>
<tr>
<td>1-B; 65.5°C dry-bulb</td>
<td>6.7</td>
</tr>
<tr>
<td>1-B; 65.5°C dry-bulb</td>
<td>6.9</td>
</tr>
<tr>
<td>1-A; spices only</td>
<td>7.1</td>
</tr>
<tr>
<td>1-A; spices only</td>
<td>6.6</td>
</tr>
<tr>
<td>1-A; water only</td>
<td>6.6</td>
</tr>
<tr>
<td>1-A; water only</td>
<td>6.1</td>
</tr>
<tr>
<td>2</td>
<td>6.4</td>
</tr>
<tr>
<td>2</td>
<td>6.1</td>
</tr>
<tr>
<td>4</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Buege et al., Lethality of Commercial Jerky Manufacturing Processes. Submitted to Journal of Food Protection 11 November 2005
Lethality of Commercial Beef Jerky Manufacturing Processes

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4.7</td>
<td>5.4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

^ Reduction in log CFU per sample relative to initial pathogen load prior to marination.
Lethality of Commercial Beef Jerky Manufacturing Processes

1. Temperature C

Time

Dry-Bulb — Wet-Bulb — Product-Internal

Buege et al., Lethality of Commercial Jerky Manufacturing Processes. Submitted to Journal of Food Protection 11 November 2005
Lethality of Commercial Beef Jerky Manufacturing Processes

2.

[Graph showing temperature changes over time for Dry-Bulb, Wet-Bulb, and Product-Internal processes.]
3.

Temperature C

Time

Dry-Bulb Wet-Bulb Product-Internal
4.

Buege et al., Lethality of Commercial Jerky Manufacturing Processes. Submitted to Journal of Food Protection 11 November 2005