

One Team, One Purpose

Food Safety and Inspection Service

Protecting Public Health and Preventing Foodborne Illness

FSIS: Analytical Tools for WGS

October 26, 2017

Glenn E. Tillman, PhD Chief, Microbiology Characterization Branch Eastern Laboratory (Athens, GA) Office of Public Health Science Food Safety Inspection Service, USDA Food Safety and Inspection Service: FSIS: Update on WGS

- Background
- What are we doing (or planning to do) with our data?
- Concluding remarks

Food Safety and Inspection Service: Why WGS?

- Improved resolution for foodborne illness investigations
 - Improved strain discrimination, illness cluster detection, and case classification

• Supports FSIS mission goals

- Effectively use science to understand foodborne illness and emerging microbiological trends
- Identification of environmental harborage or recurrences of pathogens in FSIS-regulated establishments/products to further support the inspection and verification process
- Alignment of pathogen surveillance with our domestic public health and regulatory partners
 - Collaborative efforts with US Food and Drug Administration Center for Food Safety and Applied Nutrition (FDA-CFSAN), the US Centers for Disease Control and Prevention (CDC), the US National Institutes of Health National Center for Biotechnology Information (NCBI), and also state/local health partners/laboratories

Food Safety and Inspection Service: WGS at FSIS: Current Status

- FSIS has built capacity for conducting WGS on all isolates obtained from FSIS sampling programs
 - Currently 12 sequencers in FSIS Field Service Laboratories, and expect all to be operational in early FY18
 - In FY17, FSIS sequenced 7,282 isolates
- In collaboration with our public health and regulatory partners, FSIS currently considers available WGS analyses in addition to PFGE, epidemiological and traceback information to further understand the relationship between clinical and food isolates
- FSIS works with National Antimicrobial Resistance Monitoring System (NARMS) partners (FDA, CDC) to understand the occurrence or introduction of antimicrobial resistance genes in pathogens of interest

Food Safety and Inspection Service: FSIS Sequencing Efforts and Data Sharing

FSIS Submissions to NCBI Bioprojects

- PRJNA242847
 - GenomeTrakr Project: USDA-FSIS (*Salmonella*)
- PRJNA215355
 - GenomeTrakr Project: FDA (Listeria monocytogenes)
- PRJNA287430
 - USDA-FSIS: Campylobacter
- PRJNA268206
 - GenomeTrakr Project: USDA-FSIS (STEC)
- PRJNA292666
 - FSIS NARMS Salmonella
- PRJNA292667
 - FSIS NARMS E. coli
- PRJNA292668
 - FSIS NARMS Campylobacter
- PRJNA292669
 - FSIS NARMS Enterococcus

Number of Isolates Sequenced by Fiscal Year

Food Safety and Inspection Service: WGS Data Sharing – Metadata

S NCBI Re	esources 🕑 How To 🕑			usda fsis el My NCBI	Sign Out
BioSample	BioSample	 ESIS1808985 		() Saarch	
	biodampio	Create alert Advanced		Con Contraint	Help
Full 🛩			Send to +		
				Related information	
Pathogen: e	environmental/food/of	ther sample from Listeria monocytogenes		BioProject	
dentifiers	BioSample: SAMN05366	775, Sample name: FSIS1606985; SRA: SRS1548159		SRA	
Smanism	Listèria monocytorener	Тахополту			
Alfanson.	celular organisms; Bacteria;	Terrabacteria group, Firmicutes, Bacilli, Bacilales, Usteriaceae	Listeria		
ackage	Pathogen: environmental	/food/other; version 1.0		Search details	
Holisation	FSIS1606985[All Fields				
(incluies	strain	FSIS1606965			
	collected by	0504-F515			
	conection date	2010			
	geographic location	Product Swah Non meat			
	latitude and longitude	missing		Search	See more.
	lautude and longitude	masung			
BiaProject	PRJNA215355 Listeria m	nonocytogenes		Recent activity	
	Retrieve all samples from	a this project		Tum	Off Clear
				Pathogen: environmental/fo	od/other
Submission	USDA FSIS, Glenn Tillma	sample from Listeria monoc	y biosample		
Address Call	UNE200772 IN E200775			Q FSIS1606985(1)	Balland
inDiniant CO	N/0300715 IU. 0300715				визапри

- Description about an isolate that has an experiment assigned
- Metadata, such as source type, organism, serotype etc.
- BioSample number is specific to a bacterial isolate for FSIS

Food Safety and Inspection Service: FSIS: WGS Analytical Tools Overview

- Quality Control Assessment
- Antibiotic Resistance gene detection
- Salmonella and STEC serotype determination
- STEC Virulence Gene characterization
- Phylogenetic Comparisons

Further Characterization of Isolates Using WGS

Campylobacter speciation Serotyping/serogrouping Salmonella Adulterant STEC Antimicrobial Resistance (Phenotype • prediction) Salmonella Campylobacter – E. coli Enterococcus Identify characterized genes of interest • Resistance to environmental factors (heat, acid, etc) Virulence factors • *stx/eae* sub-types (STEC) Alternative to PFGE for comparison of ۲ genotypes wgMLST analyses SNP analyses

A single workflow for many characterization

 approaches via informatics

Food Safety and Inspection Service: FSIS: WGS Data Analyses Work Flow Overview

Genotypic Screening for Antimicrobial Resistance Using WGS Data

- Ability to rapidly identify new genes of concern in sequenced isolates
- FSIS works with NARMS and other public health and regulatory partners to identify presence of genes or genetic markers of interest
 - When possible, FSIS currently compares genotype prediction to phenotype using the NARMS panel

2015

R > 1

Salmonella and

Campylobacter

antimicrobial

from cecal with

- Examples:
 - Extended spectrum betalactamases (*bla*_{CTX-M-65})
 - Colistin
 - Quinolone
 - Linezolid
 - Daptomycin

2017

and

All Salmonella

Campylobacter

from both cecal

AMR E. coli and Enterococcus

and HACCP

2016

and

All Salmonella

Campylobacter

from cecal

Food Safety and Inspection Service: WGS usage: Antibiotic Resistance Gene Detection

Food Safety and Inspection Service: WGS usage: Antibiotic Resistance Gene Detection

Iimsadmin@ASIFEDD447N3X12: /media/iimsadmin/Data1/170929_M04790_0132_000000000-8DP3M/clc_assemblies/for
P3M/clc_assemblies/for_slide\$ class_resfinder170825.sh Processing: FSIS11704693.fa
Found 2 aminoglycoside genes in FSIS11704693.fa Processing: FSIS11704693.fa
Found 1 beta-lactam genes in FSIS11704693.fa
Found 0 colistin genes in FSIS11704693.fa
Found 0 fosfomycin genes in FSIS11704693.fa
Found O fusidicacid genes in FSIS11704693.fa
Processing: FSIS11704693.fa Found O macrolide genes in FSIS11704693.fa
Processing: FSIS11704693.fa Found 0 nitroimidazole genes in FSIS11704693.fa
Processing: FSIS11704693.fa Found 0 oxazolidinone genes in FSIS11704693.fa
Processing: FSIS11704693.fa Found 2 phenical genes in ESIS11704693 fa
Processing: FSIS11704693.fa
Processing: FSIS11704693.fa
Processing: FSIS11704693.fa
Found 1 sulphonamide genes in FSIS11/04693.fa Processing: FSIS11704693.fa
Found 1 tetracycline genes in FSIS11704693.fa Processing: FSIS11704693.fa
Found 0 trimethoprim genes in FSIS11704693.fa Processing: FSIS11704693.fa
Found 0 vancomycin genes in FSIS11704693.fa

https://bitbucket.org/genomicepidemiology/resfinder

GENE	%COVERAGE	%IDENTITY	#FILE	CATEGORY	SEQUENCE
blaCTX-M-65	100	100	FSIS11704693	Beta-lactam resistance	FSIS11704693_S10_L001_R1_001_(paired)_trimmed_(paired)_contig_19
aadA1	95.37	99.89	FSIS11704693	Aminoglycoside resistance	FSIS11704693_S10_L001_R1_001_(paired)_trimmed_(paired)_contig_45
tet(A)	100	100	FSIS11704693	Tetracycline resistance	FSIS11704693_S10_L001_R1_001_(paired)_trimmed_(paired)_contig_45
sul1	100	100	FSIS11704693	Sulphonamide resistance	FSIS11704693_S10_L001_R1_001_(paired)_trimmed_(paired)_contig_45
floR	99.92	98.19	FSIS11704693	Phenicol resistance	FSIS11704693_S10_L001_R1_001_(paired)_trimmed_(paired)_contig_70

slide

Antimicrobial Resistance (Phenotype Prediction) Using WGS Analyses

- Analyzed ~1190 Salmonella isolates from FY2016 NARMS cecal sampling
 - Includes isolates from all animals tested
- Compared genotypic prediction for resistance phenotype to reported phenotype using NARMS panel
 - Overall concordance for 1130 isolates (95.0%)

Phenotype	Number of Isolates with Phenotype Using NARMS Panel	Percent Concordance of Genotype with Phenotype
Pan-susceptible	769	99.1%
Beta-lactam resistance	110	99.1%
Aminoglycoside resistance	167	98.8%
Phenicol resistance	42	97.6%
Tetracycline resistance	330	99.7%

Food Safety and Inspection Service: WGS usage: Salmonella Serotype Determination

Using WGS Analyses for Serotype Determination

- FSIS sequenced 4205 *Salmonella* isolates from various sampling programs from Jan 2015 through Jun 2017
- Compared serotype reported by routine methods (molecular serotyping or traditional serology) with serotype determined using a custom query to SeqSero database
 - For 4045/4205 (96.2%) of isolates, WGS that matched reported serology result
 - For 160/4205 (3.8%) of isolates, WGS did not match reported serology result
 - Includes isolates with incomplete genetic factor set (cannot call/identify serotype)

WGS usage: MLST and virulence typing in Shiga toxin-producing *Escherichia coli*

WGS usage: MLST and virulence typing in Shiga toxin-producing Escherichia coli

😰 limsadmin@ASIFEDD447N3X12: /media/limsadmin/Data3/ecoli_isolates/for_slide	X
limsadmin@ASIFEDD447N3X12:/media/limsadmin/Data3/ecoli_isolates/for_slide\$ stec_characterizat	tio^
Processing: FSIS1608854.fa	
Found 2 O antigen genes in FSIS1608854.fa	
Processing: FSIS1608854.fa	
Found 1 H antigen genes in FSIS1608854.fa	
Processing: FSIS1608854.fa	
Found 7 MLST genes in FSIS1608854.fa	
Processing: FSIS1608854.fa	
Found 1 shiga toxin genes in FSIS1608854.fa	
Processing: FSIS1608854.fa	
Found 1 intimin genes in FSIS1608854.fa	
limsadmin@ASIFEDD447N3X12:/media/limsadmin/Data3/ecoli_isolates/for_slide\$	Ŧ

FSIS_Number	Serotype	Sequence_type	stx_type	eae_allele
FSIS1608854	O26:H11	ST-21	stx1a	Beta1

Using WGS Analyses for MLST and virulence typing in Shiga toxin-producing *Escherichia coli*

Serogroup (no. sequenced)	Top 7 gene MLST sequence types	Top <i>stx</i> types	<i>eae</i> types	Top Serotype
O26 (50)	ST-21 (82%)	stx1a (80%) stx2a (16%)	Beta1 (100%)	O26:H11 (100%)
O45 (20)	ST-17 (95%)	stx1a (100%)	Epsilon (95%)	O111:H8 (100%)
0103 (147)	ST-17 (67.8%)	stx1a (98.0%)	Epsilon (84.9%)	O103:H2 (84.9%)
0111 (44)	ST-16 (93.0%)	stx1a (86.0%)	Theta (100%)	O111:H8 (100%)
0121 (15)	ST-655 (93.3%)	stx2a (100%)	Epsilon (100%)	O121:H19 (100%)
O145 (18)	ST-32 (100%)	stx1a stx2d (38.9%) stx2a (27.7%) stx2c (11.1%)	Gamma-1 (100%)	O145:H28 (100%)
0157 (149)	ST-11 (96.00%)	stx1a stx2a (28.2%) stx2c (22.8%) stx2a (20.1%)	Gamma-1 (100%)	O157:H7 (100%)

- *E. coli* serotypes, O157:H11 & O157:H29 identified to be lacking *eae/stx* through WGS
- *stx*-negative strains can be identified as serotype *E. coli* O157:H7 based on WGS

WGS Analyses for Phylogenetic Context: wgMLST and hqSNP Analyses

FSIS uses pipelines developed by public health partners Lyve-SET <u>https://github.com/lskatz/lyve-SET/blob/master/</u>

NCBI Pathogen Detection Isolates Browswer http://www.ncbi.nlm.nih.gov/pathogens

FDA SNP Pipeline https://github.com/CFSAN-Biostatistics/snp-pipeline

wgMLST BioNumerics 7.6 CDC-PulseNet

Food Safety and Inspection Service WGS usage: SNP tree from NCBI Pathogen Pipeline

https://www.ncbi.nlm.nih.gov/pathogens/isolates/

64	Man Courses of	ahga	17	Kanto 20						_	2 5.500			0	
) v	S. Natimal Ubro	ety of Masilian	\rangle	CBI I: Nationa	el Center	ter Biolesi	Brokege b	Arrester					Vé	offe fai	LOI MY IKE
its.	ath + Pathop	n Delpctive	- huld	in Browner											
3	ssit.						×	Queen							
1	салауллактак уқи	9C.			• B							* they	\$toer#	204e	- 4/
1	Granten Brann			and a second	Desire D	Landard	Indiana I	H. Papil	 * - E		and in the second		-	427-4	the Local
1	Caraphile in and	Inclusion		PERMITANT A	mitari	-	Area Sector State	minnetä		4	na (sainimpini)		1010000000000		164/103-101
4	Cereptower:	FREITING		renation a	1017010		Arrait Cath-Tim			-			100000000000000000000000000000000000000	6	14138-411 1470
1	Carolyleane gain	(Annual)		solution.	200304	ninia i	Annal Carlo Tim		10000009413	. 4	In completions		(Conference)		NATION 191 ANTIN
4	Carippidialies pages	-		POTOBERE (201749-2	1964	Arenal Dano- Bates Dance	antonata		25	AN EMPROVEMENT		PD CORRECTION AND IN		isecista.rtsi un(O)
1	Campionactor Journ	Exertised.		91738(10104)	207313	158.56	Annual Carlos (Inno		PERMIT CETLI		S MARRING		*pumments		917)
	Careyhilacter John	-		001040103463	2017013	LUSS TY	Anneal Care- ranhe	enteristi	100000000000000000000000000000000000000		- 38080360		1000000000		1940/04-190 945/0
18	Canyotherat agen	Phentiste		TELEVISION OF	jiniana	i dado	Annal Same line	existentia	HOMEOWER, J	. 4	vv <u>SenterCover</u>		1000000000		MERA (9)

🗇 🖬 myathawa wata mikipiwipit	n ja Grander Briefer ander Kristenske Brieferske Brieferske Bilder (* 1986) – 🥙 🛛 🔍 Grand	00 0 4 A S
(1) S. Katoral Library of Redicio	NCBI Rational Confector Detectrology information	outs, bus, al, By SCH (1
Fruith - Fathager Detection -	Indian Browner > SkiP Inte for PO0000000818.177	
	Provide the second s	alfoutivie inte de fout-spaciale
Second	Note (207	(Lenner) 🔍 mergerar 12.000 in (Decidia 💆 👘
witters Elberre States	C K Erenal	Analysia Faculta 💷
	y a hpi st2 a i i i	View 1-28 of 757
I Referato anti factori facto	 Bender Drumer Landers Heidener Heidener Vollener Statister Mei- Mitz Belderge	Assentity E-morgrap AST phonologics ANE positypes Microsological

Product	Serotype	Total #	% in SNP cluster (#)	% w/in 20 SNPs of clinical	% w/in 10 SNPs of clinical
Total Serotypes	Enteritidis	447	99.8% (446)	98.9% (442)	90.6% (405)
	Kentucky	607	99.8% (606)	0% (0)	0% (0)
	Heidelberg	74	98.6% (73)	98.6% (73)	86.4% (64)
	Schwarzengrund	122	100% (122)	47.5% (58)	7.3% (9)
	Infantis	218	94.5% (206)	92.2% (201)	50.9% (111)
	Typhimurium	155	96.8% (150)	30.3% (47)	10.3% (16)

Food Safety and Inspection Service WGS usage: SNP tree from NCBI Pathogen Pipeline

Food Safety and Inspection Service WGS usage: hqSNP analyses and wgMLST with *Listeria monocytogenes*

Food Safety and Inspection Service WGS usage: hqSNP analyses and wgMLST with *Listeria monocytogenes*

Lab Number	Primary_PN_Pattern	Sec_PN_Pattern	Lyve-SET SNP Clade	CFSAN Snp Pipeline Clade	wgMLST Clade
FSIS1400040	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1400020	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1400249	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1400248	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1400246	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500681	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500682	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500683	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500684	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500685	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500686	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500688	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500689	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500690	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500691	GX6A16.0018	GX6A12.0022	1	l .	1 1
FSIS1500692	GX6A16.0018	GX6A12.0022	1	· · ·	1 1
FSIS1502844	GX6A16.0018	GX6A12.0022	2	2	2 <mark>22</mark>
FSIS1502845	GX6A16.0018	GX6A12.0022	ź	2	2 <mark>22</mark>
FSIS1502847	GX6A16.0018	GX6A12.0022	ź	2	2 <mark>22</mark>
FSIS1502848	GX6A16.0018	GX6A12.0022	2	2	2 <mark>22</mark>
FSIS1502849	GX6A16.0018	GX6A12.0022	2	2	2 2
FSIS1502850	GX6A16.0018	GX6A12.0022	2	2	2 2
FSIS1502851	GX6A16.0018	GX6A12.0022		2	2 2

<mark>0-5</mark>	
0-10	
0-15	
0-20	

WGS usage: Usage of genotypic data to predict phenotypic characteristics

- FSIS is beginning to explore using genotypic data to predict phenotypic characteristics
 - Previous examples of antimicrobial resistance markers
 - Resistance to other environmental factors (i.e. heat, acid, certain chemicals, etc)
- Example: Locus of Heat Resistance (LHR) 14-kb genomic island
 - Present in a diverse group of Enterobacteriaceae, including Cronobacter sakazakii, Klebsiella pneumoniae, Enterobacter cloacae, E. coli, and Salmonella
 - A BLAST database including genes contained in the LHR was built based on the published sequence of *E. coli* AW1.7
 - Salmonella isolates from FSIS-regulated products were sequenced, assembled and queried against the LHR BLAST database
 - 11 FSIS *Salmonella* isolates contained LHR genes of interest
 - Additional phenotypic testing required to determine if isolates exhibit resistance to heat
- Heat resistance can be linked to different biological pathways/genes
 - Advantage of WGS: As new pathways/genes are identified, data can be queried again

Concluding Remarks

- FSIS' new strategic plan is focused on the use of new technology to prevent foodborne illnesses and protect public health
 - Includes two objectives specific to incorporating WGS into FSIS surveillance and regulatory efforts
- FSIS has built sufficient capacity for conducting WGS on all FSIS pathogen isolates
 - Sequenced 7282 isolates in FY17 with the future target of ~10,000 isolates/year
- FSIS is exploring how we can use WGS data beyond outbreak investigations, including understanding the link between genotypes and phenotypes of interest
- FSIS continues to engage with national and international partners
- FSIS continues to use WGS analyses in conjunction with other metadata, including epidemiological and traceback information, to further understand the relationship between clinical, food and environmental isolates

Food Safety and Inspection Service: Acknowledgements

National Center for Biotechnology NCBI Information

- USDA FSIS Offices
- USDA ARS
- CDC PulseNet and NARMS
- FDA CFSAN
- FDA CVM
- NCBI
- State Laboratories

INSTITUTE FOR FOOD SAFETY AND HEALTH

