Food Safety and Inspection Service
Protecting Public Health and Preventing Foodborne Illness
An Assessment of Prevalence-based Models for Predicting Reductions in Illnesses Attributed to Microbial Food-Safety Policies

Eric Ebel, DVM and Michael Williams, PhD
USDA-FSIS-Office of Public Health Science-Risk Assessment and Analytics Staff
When Are Qualitative Testing Results Sufficient To Predict a Reduction in Illnesses in a Microbiological Food Safety Risk Assessment?

ERIC D. EBEL AND MICHAEL S. WILLIAMS*

U.S. Department of Agriculture, Food Safety and Inspection Service, Risk Assessment and Office of Public Health Science, Analytics Staff, 2150 Centre Avenue, Building D, Fort Collins, Colorado 80526, USA

MS 15-042: Received 29 January 2015/Accepted 9 April 2015
Food Safety and Inspection Service:
Outline

• Framework for Quantitative Microbial Risk Assessment
• Motivation for simplifying models
• Analytic methods
• Results

- **Fundamental eqn for QMRA**

 \[P(ill) = \int R(D) f(D) dD \]

- **Simplification for low doses**

 \[P(ill) = \int \beta D f(D) dD = \beta D_{avg} \]

- **Simplification for prevalence-based**

 \[P(ill) = P(ill \mid exp) P(exp) + P(ill \mid \overline{exp}) P(\overline{exp}) \]

 \[= P(ill \mid exp) P(exp) \]

Do benefits from illnesses avoided outweigh industry costs for implementing a new regulation?

\[
\text{Public Health Benefits} = \Delta N_{\text{ill}} \times (\text{cost/illness}) \geq \text{Cost}
\]

Illness reductions are proportional to the current number of illnesses

\[
\Delta N_{\text{ill}} = K N_{\text{illnesses}}, \quad 0 \leq K \leq 1
\]
Total illness burden:

\[N_{illnesses} = N_{servings} P(ill), \text{ where } P(ill) = \text{illness per serving} \]

The effect of a reduction in contamination is:

\[\Delta N_{ill} = N_{servings} \left[P_{baseline}(ill) - P_{new}(ill) \right] \]

\[\Delta N_{ill} = \left[1 - \frac{P_{new}(ill)}{P_{baseline}(ill)} \right] N_{illnesses} \]

\[\Delta N_{ill} = \left[1 - \frac{P(ill \mid exp)P_{new}(exp)}{P(ill \mid exp)P_{baseline}(exp)} \right] N_{illnesses} \approx \left[1 - \frac{P_{new}(exp)}{P_{baseline}(exp)} \right] N_{illnesses} \]

Desired risk assessment output
Food Safety and Inspection Service: Typical Food Safety Risk Assessment

- Growth
- Partitioning, Mixing, Cross-contamination
- Difficult to fill data gaps
- Growth or attenuation
- Cross-contamination, partitioning, attenuation
- Data collection by FSIS at slaughter or processing
- Is dose sufficient to cause illness?

$$f(\lambda)$$
$$f(D)$$
• Risk assessments should be fit for purpose
 – Focused on risk management options
 – Readily implemented and communicated
 – Amenable to evaluating the effectiveness of implemented policies empirically

• Risk assessments should feature available data
• FSIS product sampling data
• CDC surveillance (FoodNet, FDOSS)
Food Safety and Inspection Service: FSIS Sample Collection and Testing

Sample Collection

Screening test for pathogen presence $P(\+)

Enumeration to determine levels λ
Food Safety and Inspection Service:
Summarizing FSIS testing data

log10 transformed *Campylobacter* concentration (cfu/ml)

Limit of Detection (L)

$P(-) = 0.54 \quad P(+) = 0.46$
FoodNet Illness (2013) = 7,277

\[
\{
\begin{align*}
600,000? \\
1,125,000? \\
2,000,000?
\end{align*}
\]

The confirmed illnesses scale up to somewhere between 600,000-2 million salmonellosis cases (Scallan 2011). About 84% of these are from domestic food sources.

Data Sources: FoodNet & Scallan et al. (2011) Foodborne Illness Acquired in the United States—Major pathogens. *Emerging Infect. Disease*
FDOSS data are used to estimate the proportion of salmonellosis cases due to chicken consumption

Painter et al. (2013) Attribution of Foodborne Illnesses... *Emerging Infect. Disease*
Bayesian calibration determines which combinations of inputs and outputs “make sense” and updates parameters.

Prior distributions for intermediate processes are specified and the final distribution applied to dose-response.

\[\Delta N_{ill} = N_{illnesses} \left[1 - \frac{P_{new}(ill)}{P_{baseline}(ill)} \right] \]
Illness reductions can be estimated by the process models, but....

Can we do something less complicated?

What if we only considered $P(+) + N_{ill}$?

A prevalence-based model is:

$$
\Delta N_{ill} = N_{ill} \left[1 - \frac{P_{new}(ill)}{P_{baseline}(ill)} \right] \approx N_{ill} \left[1 - \frac{P_{new}(+)}{P_{baseline}(+)} \right]
$$

LOD can change relationship
Food Safety and Inspection Service:
Desired properties of prevalence-based model

• Simpler model is more transparent to reviewers and stakeholders
• For the given risk management question, any approximation should be conservative (i.e., predict fewer illnesses avoided)!
Food Safety and Inspection Service:

Methods
• Use Bayesian process model as a “gold standard”

\[\text{Calculate } P_{\text{baseline}}(\text{ill}) \text{ and } P_{\text{new}}(\text{ill}) \text{ via integration of DR function across exposure dose distribution} \]

• Compare illness reduction estimates from Bayesian process model and prevalence-based model for;
 – Range of reductions in contamination distribution
 – Different product-pathogen pairs
 – Different LOD’s

\[H_0 : \left[1 - \frac{P_{\text{new}}(\text{ill})}{P_{\text{baseline}}(\text{ill})} \right] \geq \left[1 - \frac{P_{\text{new}}(+)\text{ }}{P_{\text{baseline}}(+)} \right] \]
Food Safety and Inspection Service: Datasets

• Product-Pathogen pairs considered:
 – *Campylobacter*-chicken (LOD=1 cfu/1 ml)
 – *Salmonella*-chicken (LOD=1 cfu/25 ml)
 – *E.coli* O157:H7- ground beef (LOD=1 cfu/325g)

• Data sources
 – HACCP ground beef samples (2007-2009, N=30,995)
Food Safety and Inspection Service:
Modeling the effect of a new policy

• Reduce log-transformed mean of contamination distribution at production

\[\lambda_{\text{baseline}} \sim \text{lognormal}(\mu, \sigma) \]
\[\lambda_{\text{new}} \sim \text{lognormal}(\mu - \Delta, \sigma) \]

\[\Delta = (0.1, 0.2, ..., 0.9, 1.0, ..., 1.9, 2.0) \]

2.3% reduction 90% reduction 99% reduction

• Baseline and new distributions determine the prevalence of positive samples
Food Safety and Inspection Service:
Illustration of calculations

Contamination at end of proc

$P_{\text{baseline}}(+) \approx 0.13$

$P_{\text{new}}(+) \approx 0.03$

$1 - \frac{P_{\text{new}}(+)}{P_{\text{baseline}}(+)} \approx 0.73$

Dose distribution and Dose-f

$P_{\text{baseline}}(\text{ill}) \approx 8.1 \times 10^{-7}$

$P_{\text{new}}(\text{ill}) \approx 1.0 \times 10^{-7}$

$1 - \frac{P_{\text{new}}(\text{ill})}{P_{\text{baseline}}(\text{ill})} \approx 0.88$
Results
Food Safety and Inspection Service: Chicken carcasses- *Campylobacter*: Reduction in average log-transformed mean

- Process model shows reduction in illnesses is nearly linear with reducing mean contamination at production
 - Most exposures occur in linear part of dose-response function
- Prevalence-based models predict lower reductions in illnesses consistently
 - Larger LOD=1 cfu/ml predicts greater reductions than smaller LOD=0.03 cfu/ml
 - Non-linear curves reflect dynamics of lognormal distribution’s tails
Prevalence-based model using LOD=0.04 cfu/ml is downward biased, but only slightly
 - This is the LOD used currently in FSIS
 - Detects 1 cfu per 25 ml

Prevalence-based model using LOD=1cfu/ml over-predicts reduction in illnesses
 - LOD is too far out in the tail of the lognormal distribution
 - Baseline would only find 0.5% of samples positive
• Process model reductions are more non-linear than other examples
 – substantial share of risk of human illness results from higher doses where the dose-response function is nonlinear

• Curves for process model and prevalence-based model using LOD=0.003 cfu/g are equal
 – This is the LOD used currently in FSIS
 – detects 1 cfu per 325 g
 – Using a higher LOD (0.015) slightly over-predicts illness reductions, but detection of positive samples would be exceptionally rare
Food Safety and Inspection Service:
Conclusions

• Prevalence-based model is reasonable
 – Prevalence-based model can over-predict true change in probability of illness per serving if LOD very high

• Agreement is highest for “rare” pathogens

• Prevalence-based model can be used in situations where enumeration data are not available
 – Substantial cost savings
 – Works in situations where enumeration data are too limited to fit $f(\lambda)$
Food Safety and Inspection Service: Implications for FSIS performance standards

• Historically, FSIS performance standards based on prevalence
 – if below avg, passing
 – if above avg, failing

• Recently, linked performance standards to public health goals
 – If prevalence across industry were to decline, what would be the public health benefit?

• Effectiveness of standards depends on compliance

• Projected public health benefits of performance standards may be conservative
Food Safety and Inspection Service:

Questions?