Controlling *Campylobacter* in Poultry Plants

For the FSIS “How to” Workshops
Spring 2009
Presented by
Dr. Patricia Curtis and Ms. Jessica Butler
Auburn University
By the end of this workshop, you will be able to

- Understand the bacterium *Campylobacter* and its risk factors
- Identify practical tools and methods to control *Campylobacter*
- Develop and implement controls for *Campylobacter* in your operations
Campylobacter

- Slender, curved, and motile rod
- Gram negative
- Relatively fragile and sensitive to environmental stresses
- Microaerophilic organism requires 3%–5% oxygen and 2%–10% carbon dioxide for optimal growth conditions
Campylobacter (con’t)

- Carried in the intestinal tract of a wide variety of wild and domestic animals
- Can survive 2–4 weeks under moist, reduced-oxygen conditions at 4°C
- Can also survive 2–5 months at 20°C
- Can only survive a few days at room temperature
- Exposure to air, drying, low pH, heating, and freezing and prolonged storage damage cells and hinder recovery
- Infective dose ranges from 500 to 10,000 cells
Currently, FSIS does not have a performance standard for *Campylobacter*

FSIS plans to test and report *Campylobacter* results to plants as it does for *Salmonella*

The broiler baseline currently in progress is intended to establish standards for *Campylobacter* in the form of guidance
Risk Factors Associated with Sporadic Illness Due to *Campylobacter* spp.

- Eating undercooked poultry
- Handling raw poultry
- Frequent contact with dogs or cats, particularly young pets, such as kittens and puppies
- Drinking non-potable water
- Drinking unpasteurized milk or dairy products made from non-heat-treated milk
- Eating barbequed poultry, pork, or sausages
- Eating poultry liver
- Taking trips abroad

Adapted from Opinion of the Scientific Committee on Veterinary Measures relating to Public Health on Foodborne Zoonoses
Preharvest Control

Campylobacter is more difficult to control through on-farm practices than *Salmonella*.
Preharvest *Campylobacter* Control

- **Restricting access**
 - Vehicles
 - People
 - Animals
 - Insects

- **Biosecurity**
 - Dedicated clothing and boots
 - Disinfectant boot dip
Preharvest *Campylobacter* Control *(con’t)*

- **Feed**
 - Heat-treated
 - Pelletized

- **Litter**
 - Maintain low water activity

ARS Photo by Stephen Ausmus
Recommended Preharvest Best Practices

- Implement biosecurity measures
- Use good sanitation practices
- Control insects and rodents
- Control litter moisture
- Use well-timed feed withdrawal
- Use acids in drinking water during feed withdrawal

ARS Photo by Stephen Ausmus
Discussion Questions

- What do you know about the live birds from which you are producing product?
- Do you know the level of *Campylobacter* contamination?
A poultry HACCP plan should address *Campylobacter*

Verification of the HACCP plan’s ability to control *Campylobacter* is suggested
Sanitation

What role does sanitation play in controlling *Campylobacter*?
Plants may address *Campylobacter* control in their sanitation standard operating procedure (SOP) or other prerequisite program.

How effective is YOUR sanitation program in controlling *Campylobacter*?
Sanitation and Hygiene

- Clean before sanitizing
- Enforce employee hygiene
Sanitation and Hygiene (con’t)

Alkaline Detergents
- Sodium hydroxide
- Nitrous oxide
- Sodium silicate
- Trisodium phosphate

Acid Detergents
- Hydrochloric acid
- Sulfuric acid
- Phosphoric acid
- Acetic acid

Note: Frequently used and vary in strength

Note: Vary in strength
Sanitation and Hygiene (con’t)

- **Sanitizers**
 - Quaternary ammonia*
 - Industrial strength bleach
 - Iodine compounds
 - Peracetic acid
 - Steam
 - Ozone

- **Some sanitizers work better in certain parts of the plant**
 - Iodophors
 - Aluminum equipment, rubber belts, tile walls
 - Active chlorine
 - Walls (other than tile), wooden crates, concrete floors

*Quaternary ammonia is a type of synthetic detergent.
Recommended best practices

- Sanitize and dry cages thoroughly
- Maintain positive air flow from inside to outside the plant
- Provide SOP and employee training
- Schedule flocks for slaughter based on pathogen loads
Recommended best practices

- Consider electrical stunning
 - Cheapest and most effective method
- Use well-timed feed withdrawal to reduce feces release
Scalding

- Recommended best practices
 - Use counter-flow water movement
 - Use high flow rates with agitation to help dilute dry matter and bacteria
 - Use multi-stage tanks
 - Maintain pH above 7.5 or below 6.5
 - Use pre-scald brushes to help clean birds before entering scalder
 - Use post-scald rinse to help remove debris
 - Maintain scalder temperature
Recommended best practices

- Prevent feather buildup on equipment
- Rinse equipment and carcasses
- Use 18–30 ppm chlorine rinse post-picking
Evisceration

- Recommended best practices
 - Adjust and maintain equipment regularly and as needed
 - Use 20 ppm chlorine for whole carcass rinses
 - Enforce employee hygiene standards

Note: Feed withdrawal practices affect process control at this step.
Evisceration (con’t)

- Carcass rinses
 - 23 ppm free available chlorine
 - 10% TSP (trisodium phosphate)
 - 2% lactic acid
 - 5% sodium bisulfate
 - 5% cetylpyridinium chloride

- Be aware how chemical residues can impact pH of chiller

Note: Multiple washes in a series are more effective than a single wash for Campylobacter.
Immersion Chilling

- If using chlorine, maintain chill water pH between 6.0 and 6.5, and at a temperature of less than 40°F
- Use high water flow rate and counter-current flow
- Use 20–50 ppm free available chlorine in the potable water measured at intake
- Use oxidation reduction potential pH with pH monitors

Note: Correlation between *E. coli* and *Campylobacter*.
Immersion Chilling (con’t)

- 10 ppm free available chlorine can eliminate *Campylobacter* in 120 minutes
- 30 ppm free available chlorine can eliminate *Campylobacter* in 6 minutes
- 50 ppm free available chlorine can eliminate *Campylobacter* from the water in 3 minutes

Note: Organic matter in the chiller binds the free chlorine, thus making it unavailable.
Factors Affecting Chiller Water Quality

- High flow rate (1 gallon per bird)
- Counter-current water flow
- 20–50 ppm free available chlorine measured at intake
- Red water (recycled water) may contain up to 5 ppm free available chlorine measured at intake
- Water pH 6.0–6.5
- Water temperature less than 40°F
Air Chilling

- Meet regulatory requirements for chilling
- Clean and oil chains regularly
- Inspect and replace shackles as needed
- Maintain tension on chain to prevent carcass-to-carcass contact
- Sanitation is important—no chemical interventions
Reprocessing

- Use post-chill antimicrobial dips to reduce *Campylobacter* loads
- Heated water, agitation, application under pressure, and calibrating pH can enhance *Campylobacter* reduction
Reprocessing: Approved Substances

- Chlorine, chlorine dioxide, and acidified sodium chlorite
 - Water soluble
 - Spray or dip
 - Agitation and application under pressure enhance effectiveness

Note: 10 ppm free available chlorine can eliminate *Campylobacter* in 113 minutes. *Campylobacter* can be eliminated in water in 6 minutes with 50 ppm.
- **Chlorine**
 - Primarily used to treat processing and chiller water
 - Heat and pH above 6.5 decrease its effectiveness

- **Chlorine dioxide**
 - Can be used in water
 - Leaves no residue
 - Should NOT exceed 3 ppm residual chlorine dioxide
Reprocessing: Approved Substances (con’t)

- Acidified sodium chlorite
 - Combination of citric acid and sodium chlorite
 - Can be used as spray or dip at 500 to 1,200 ppm singly or in combination with other GRAS acids to achieve a pH between 2.3 and 2.9 as an automated reprocessing method
 - In chiller water, it is limited to 50 to 150 ppm singly or in combinations with other acids to achieve a pH between 2.8 and 3.2
Reprocessing: Approved Substances (con’t)

- Trisodium phosphate (TSP)
 - Approved for on-line reprocessing
 - Acts as a surfactant (high pH)
 - Residual TSP carries over into chiller
 - Must monitor pH of chiller water
 - Rinsing carcasses after TSP but prior to chiller decreases its effectiveness
 - More effective with air chilling than immersion chilling
Cetylpyridinium chloride
- Quaternary ammonium compound
- Approved for processing in ready-to-cook poultry products
- Produces no adverse organoleptic effects
- pH is near neutral
- Stable, non-volatile, and soluble in water
Reprocessing: Approved Substances (con’t)

- **Inspexx 100**
 - Peroxyacetic acid
 - Approved as a carcass spray for on-line reprocessing (OLR)
 - Must not exceed 220 ppm
- **Spectrum**
 - Peroxyacetic acid and a proprietary substance
 - Can be used in process, scalder, and chiller water and as a carcass spray, wash, or dip
Web Sites for Most Currently Approved Substances

- Safe and Suitable Ingredients Used in the Production of Meat and Poultry Products

- Proprietary Substances
To prevent cross-contamination:

- Sanitize well
- Practice good hygiene
- Keep poultry meat below 40°F
- Consider air flow and traffic patterns
Validation

- 9 CFR 417.4
- Validation verifies the effectiveness of interventions
- Establishments must validate their intervention processes
- Acceptable validation methodologies
Campylobacter continues to be an issue in poultry processing plants.

Each plant is unique and must determine the best way to control Campylobacter in their operation.

Bio-mapping provides a way to identify critical areas where control measures should be applied.
Multiple hurdles are better at controlling *Campylobacter* than single control measures

Campylobacter testing should be done on a regular basis to validate that the control measures are working

Sanitation effectiveness should be monitored
Campylobacter Summary

- Carried in the intestinal tract of a wide variety of wild and domestic animals
- Can survive 2–4 weeks under moist, reduced-oxygen conditions at 4°C
- Can also survive 2–5 months at 20°C
- Can only survive a few days at room temperature
- Exposure to air, drying, low pH, heating, and freezing and prolonged storage damage cells and hinder recovery
- Infective dose ranges from 500 to 10,000 cells