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a b s t r a c t

Indicator organisms, such as generic Escherichia coli (GEC) and coliforms, can be used to measure changes in mi-
crobial contamination during the production of food products. Large and consistent reductions in the concentra-
tion of these organisms demonstrates an effective and well-controlled production process. Nevertheless, it is
unclear to what degree concentrations of indicator organisms are related to pathogenic organisms such as
Campylobacter and Salmonella on a sample-by-sample basis. If a strong correlation exists between the concentra-
tions of different organisms, then the monitoring of indicator organisms would be a cost-effective surrogate for
the measurement of pathogenic organisms. Calculating the correlation between the concentrations of an indica-
tor and pathogenic organism is complicated because microbial testing datasets typically contain a large propor-
tion of censored observations (i.e., samples where the true concentration is not observable, with nondetects
and samples that are only screen-test positive being examples). This study proposes a maximum likelihood esti-
mator that can be used to estimate the correlation between the concentrations of indicator andpathogenic organ-
isms. An example based on broiler chicken rinse samples demonstrates modest, but significant positive
correlations between the concentration of the indicator organism GEC when compared to the concentration of
both Campylobacter and Salmonella. A weak positive correlation was also observed between concentrations of
Campylobacter and Salmonella, but it was not statistically significant.
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1. Introduction

Microbiological data are collected and tested for a broad range of ap-
plications in fields ranging from agronomy to zoology. It is common
practice to assess the presence and concentration of multiple species of
organisms in each sample. For example, the Food Safety and Inspection
Service (FSIS) in the United States collects samples of poultry carcasses
and measures the concentration of generic Escherichia coli (GEC),
Salmonella, Campylobacter and coliforms (FSIS, 2008). The cost of testing
for each of these species varies considerably, with the non-pathogenic
GEC and coliform testing being less expensive and time consuming
than testing for the pathogenic species such as Salmonella, Listeria
monocytogenes, and Campylobacter. Species that are easily quantified
and present in nearly all samples are referred to as indicator organisms.
Testing for indicator organisms is advantageous because they are found
in a much higher proportion of samples than pathogenic organisms.

Interest lies in determining whether the concentration of an indica-
tor organism is positively correlated with concentrations of a target
organism (Buchanan and Oni, 2012). If concentrations of GEC were
sufficiently well correlated with concentrations of Salmonella or
Campylobacter, then GEC concentrations would serve as reasonable

indicators for concentrations of a pathogen. Using concentrations of
indicator organisms, rather than concentrations of pathogenic organ-
isms, would reduce sample size requirements and laboratory costs. A
negative correlation between an indicator organism and a pathogen
would also be of interest because it would suggest that competition
between species was suppressing the population of pathogenic organ-
isms. For example, a negative correlation would be expected between
an effective probiotic and Salmonella (Van Immerseel et al., 2002;
Gaggia et al., 2010).

Testing microbiological samples can be challenging because one
sample can contain a single viable organism, while another sample
can contain millions of organisms. This disparity is typically due to clus-
tering of contaminants or the exponential growth rate of bacteria. The
wide range of possible concentrations of contamination across samples
often requires subdividing the sample and performingmultiple tests on
subsamples to detect and quantify different species. For organisms that
occur infrequently, a large subsample is tested to determine if the or-
ganism is present in the sample. These tests are referred to as screening
tests and they return a qualitative result of presence or absence of the
target organism (+/−). Additional tests are performed on the remain-
ing subsamples when the organism of interest was detected. These
tests estimate the number of organisms in the sample.

Both the initial qualitative screening test and the subsequent test to
quantify the number of organisms are subject to aminimum concentra-
tion at which detection and enumeration of the organism is possible.
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The terms limit of detection (denoted by Lqual) and limit of quantitation
(denoted by Lquan) are used to denote the minimum number of organ-
isms in the sample forwhichdetection and quantitation are possible, re-
spectively. Observations where the organism is not detected or
quantitated are referred to as censored data, because the true concen-
tration of the organism is below the limit of detection of the assay. Sam-
ples where the concentration is less than Lqual result in left-censored
data, while a sample that generates a positive screening test result but
that cannot be quantitated, results in an interval-censored datum
(Helsel, 2005; Shorten et al., 2006; Pouillot and Delignette-Muller,
2010). Data also can be right-censored when the number of organisms
in the sample is too large for accurate quantitation, but this phenomena
occurs less frequently because the sample can easily be diluted until
quantitation is possible. For this reason right-censored data will not be
addressed in this study.

The test results of a single sample, collected during production, are
rarely of interest. Instead, the goal of most analyses is to combine the
test results from multiple samples to provide descriptive statistics for
a population. The presence of censored observations implies that even
simple statistics, such as the population mean and standard deviation,
cannot be estimated without relying on a model to adjust for the influ-
ence of the unobserved data. Thus inference is model-based (Gregoire,
1998). A common approach is tofit the data to a parametric distribution
and use the parameters of the fitted distribution to describe the charac-
teristics of the population. The fitted distribution function can be used
for quality control applications or for quantitative microbial food- or
water-safety risk assessments. For risk assessment applications, not
only are the parameter estimates of interest, the associated covariance
matrix serves an important role in describing the uncertainty in the es-
timates, with the correlation between parameters playing a vital role in
appropriate characterization of the exposure distribution (Haas, 1999;
Wu and Tsang, 2004).

Correlation can be quantified using different statistics (Oakes, 1982;
Lyles et al., 2001; Langdon et al., 2007; Newton and Rudel, 2007). For
the purpose of assessing the utility of an indicator organism, Pearson's
correlation coefficient is the most appropriate, because it measures the
strength of the linear relationship between the log transformation of
two normally distribututed random variables. This statistic, however,
cannot be directly calculated using datasets where observations are cen-
sored without using ad hoc methods, such as substituting one half the
Lquan for censored observations. The concern with the ad hoc methods
is that they can cause bias in an estimator (Shorten et al., 2006). For ex-
ample, one ad hoc method for estimating the correlation is to calculate
the correlation coefficient usingonly samples thatwere successfully enu-
merated. Significance of the correlation can also be assessed using a
number of methods (Hollander and Wolfe, 1973), but the validity of
these methods is questionable, given that they ignore both the potential
influence and variability of the censored observations.

This article presents a probabilistic framework for estimating the
correlation between the concentrations of an indicator and pathogenic
organisms for datasets containing left- or interval-censored observa-
tions. The discussion begins by defining a maximum likelihood estima-
tor that provides an estimate of the correlation coefficient as well as
parameters describing the individual distributions of each organism.
An example based on the simultaneous testing of broiler chicken car-
casses for GEC, Campylobacter, and Salmonella is provided.

2. Methods

Let X and Y be random variables describing the outcomes of labora-
tory tests for two different species of organism,whereXwill be assumed
to be the indicator organism. Also define xi and yi as the data values for
sample i. Assume a qualitative and quantitative test for each organism
with limits of detection and limits of quantitation given by Lqual,x, Lquan,x,
Lqual,y, and Lquan,x. The outcomes of the laboratory test results can take
on different forms. For example, the results may be integer-valued

data derived from colony counts per plate (Commeau et al., 2012;
Williams and Ebel, 2012) or they can be estimates of the average
concentration derived from the Most Probable Number technique
(Cochran, 1950; Pouillot et al., 2013). Regardless of the form of the
laboratory data, the goal of the analysis is to fit a single multivariate
distribution to the data that describes average concentration of the
indicator and pathogenic organisms and their correlation. The log-
normal distribution is a commonly used distribution for describing
microbial populations and fitting methods have been developed to
address integer-valued data (Williams and Ebel, 2012) and Most
Probable Number data (Pouillot et al., 2013). It is reasonable to fit in-
teger count and estimated concentration data directly to a lognormal
distribution (Busschaert et al., 2010), provided the proportion of
samples whose concentration is below Lqual is not too large
(Williams and Ebel, 2012) as is the case in this study.

Maximum likelihood estimation is the common approach for
assessing the correlation between concentrations with censored
data (Lyles et al., 2001; Newton and Rudel, 2007). When the log
transformed test results from N samples are assumed to follow a
multivariate normal distribution, as is common in quantitative
microbiology (Stoline, 1991; Mitzenmacher, 2003), the parameter
vector θ = (μ 2

X,σX,μY,σ2
Y,ρXY) can be estimated by maximizing the

multivariate likelihood function.
The contribution of each x or y value to the likelihood depends on

whether the datum is left-, interval- or uncensored. To provide some in-
sight into the form of the likelihood function it is helpful to first describe
the likelihood function in a univariate application. In this setting, if X is
successfully enumerated (uncensored), its contribution to the likeli-
hood is fX(x). If X is left censored the cumulative density function, eval-
uated at the limit of detection FX(qual,x) is used because the only
information provided by the sample is that the concentration is less
than Lqual,x. If the X is interval censored, the contribution to the likeli-
hood is FX(Lquan,x)− FX(Lqual,x), which represents the proportion of sam-
ples that were qualitatively positive, but returned a count of 0 during
enumeration. The likelihood function for this application considers
every combination of left-, interval- and uncensored results for X and
Y in the bivariate normal distribution.

Extending the notational convention of Newton and Rudel (2007)
and Hollander and Wolfe (1973) yields the likelihood function

N
ℒð Þθ ¼ ∏GX;Y xi; yi

i¼1
ð Þjθ ; ð1Þ

where the form of each term of the likelihood function varies according
to the specific ranges of X and Y. The definition of each term, as a func-
tion of X and Y, is given by

GX;Y ð Þxi; yijθ ¼ f X;Y ð Þxi; yi ; Lquan;xbxi; Lquan;ybyi
¼ FX;Y

� �
Lqual;x; Lqual;y ; xibLqual;x; yibLqual;y

¼ FX;Y
� �
Lquan;x; Lquan;y −FX;Y

� �
Lqual;x; Lqual;y ;

Lqual;x≤xibLquan;x; Lqual;x≤yibLquan;y
¼ f Xð Þxi FYjX

� �
Lqual;yjxi ; Lquan;xbxi; yibLqual;y

¼ f Y ð Þyi FXjY
� �
Lqual;xjyi ; xibLqual;x; Lquan;y≤yi

¼ f Xð Þxi
h
FY X

� �
Lquan;yjxi −FY X

� �
L ;j j qual;yjxi

Lquan;x≤xi; Lqual;y≤yibLquan;y
¼ f Y ð Þyi

h
FXjY

� �
Lquan;xjyi −FXjY

� �
Lqual;xjyi ;

Lqual;x≤xibLquan;x; Lqual;y≤yi:Z Lqual;x
Z Lquan y¼ ;

f X;Y xi; yi
−∞ Lquan;y

ð Þdydx;
xibLqual;x; Lqual;y≤yibLquan;y

¼
Z Lquan;x

Lqual;x

Z Lqual;y
f X;Y xi; yi ;

−∞
ð Þdydx

Lqual;x≤xibLquan;x; yibLqual;y:

i

i
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The specific distribution functions in the likelihood are

f xð Þi; yi ¼ bivariate normal with parameter vector θ
f Xð Þxi ¼ univariate normal with parameters μX ;σX
f Y ð Þyi ¼ univariate normal with parameters μY ;σY

FY X

� �
L ;yjxi ¼ univariate normal CDF with parameters μj � Y jx ;i σY jX

FX Y

� �
L ;xjyi ¼ univariate normal CDF with parameters μX y ;i σj � j XjY

FX;Y
� �
L ;x; L ;y ¼ bivariate normal CDF with parameters vector θ;� �

and the marginal moments are given by

μY jxi ¼ μY þ ð ÞρXYσY=σX � ð Þxi−μX
μX y ¼ μX þ ð ÞρXYσX=σY � ð Þy

i
−j i μY

σ ¼ σ
q
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ρ2

YjX Y XY

ffi

σXjY ¼ σX

qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

XY

ffi
:

The formulation of this likelihood function assumes both X and Y
have some interval-censored observations. In situations where no
screening test is applied to either X or Y, Lqual = Lquan and the interval
censored terms can be ignored. This formulation is also not specific to
the lognormal distribution, so alternative multivariate distributions
can be used, provided there is biological support for the alternativemul-
tivariate distribution.

A nonlinear optimization routine can be used to estimate

θ ¼
� �
μX ;σ

2 2
X ; μY ;σY ;σXY :

Many optimization routines also provide a numerical approximation
of the Hessian matrix, which can be inverted to provide the estimated
variance–covariance matrix Σ̂. Elements of this matrix provides esti-
mates of var½μ̂ �; var½σ2^ �, and cov½μ̂ ;σ2^ �, where *= X,Y. These estimates� � � �
are used to describe the uncertainty in the parameter estimates.

Standard practice in microbiology is to express the mean and vari-
ance parameters describing microbial count data in log10, rather than
loge, scale. The conversion between the two different scales is generally
necessary for computation and is achieved by division of the μ̂ and σ̂ pa-
rameters by loge(10).

Ideally one would like to estimate the full parameter vector θ, yet
maximizing the likelihood function for the full vector can sometimes
be problematic. One option is to first fit the data for both variables to
distributions independently and use the resulting parameter vectors�
μ̂X ;σ

2^XÞand
�
μ 2^Y ; σ̂YÞas starting values for fitting the full vector. Anoth-

er approach is to hold the vectors μ̂X ;σ
2^X and μ̂Y ;σ

2^ fiY xed and gen-
erate ρ̂ el

�
XY using a simplified lik ihood fun

Þ
ction

�
(Newt

Þ
on and Rudel,

2007).

3. Example

Interest lies in estimating the correlation between the concentra-
tions of indicator and pathogenic organisms when the data contain
left- and interval censored observations. This analysis examines the cor-
relation between GEC, Campylobacter and Salmonella derived from
broiler chicken rinse samples. Three test cases are presented, with the
first two cases being an assessment of the correlation between the
GEC indicator organism (denoted by X) and the two pathogenic organisms
(Y). The third test case examines the correlation between Campylobacter
and Salmonella. This example treats Campylobacter as the indicator
organism, due to higher percent positive rate and concentration, when
compared to Salmonella. These examples are of practical interest because
previous studies have demonstrated mixed results regarding the signifi-
cance of correlations between GEC, Campylobacter and Salmonella
(Hue et al., 2011; Ghafir et al., 2008; Zhao et al., 2002).

Routines were written to calculate the value of the likelihood func-
tion ℒ(θ) using the R programming language (R Development Core

Team, 2012). The nonlinear optimization function (optim) was used to
generate the estimated parameter vector

θ̂
�
μ σ2 2¼ ^X ; ^ X ; μ̂Y ; σ̂Y ; σ̂XYÞ:

Output from this routine also provides a numerical approximation
for the variance–covariance matrix Σ̂. The diagonal elements of Σ̂ are
used to generate the confidence intervals for ρ̂XY .

Convergence of the optimization routine was aided by accurate ini-
tial values for the μ and σ2 parameters describing the univariate distri-
bution of Campylobacter and Salmonella. These estimates were derived
from themaximization of the univariate likelihood function for the log-
normal distribution for each organism individually (Shorten et al.,
2006).

4. Broiler chicken dataset

The examples are based on data from a large survey of broiler chick-
en production collected by FSIS in the United States. This example uses
concentrations of GEC (X) and compares them to concentrations of
Campylobacter and Salmonella (Y) found in 400ml rinse samples collect-
ed at re-hang (FSIS, 2008). For this example, GECwas chosen over other
indicator organisms because it is thought to be a good indicator of fecal
contamination and more GEC samples were non-detects than Entero-
bacteriaceae or coliforms. The dataset consists of N = 3,164 observa-
tions. GEC and Campylobacter are typically found on the majority of
poultry carcasses at re-hang, with the percentage of samples where
the organism was found being 99.2 and 70.9%, respectively. Given this
high percentage, a screening test was not used. The high concentrations
of both GEC and Campylobacter at re-hang allow for enumeration using
direct plating of small aliquot volumes, which were typically 0.1 ml of
rinsate (or less if additional dilution was required). This aliquot size
yields a limit of quantitation of Lquan,x = 10cfu/ml. For Salmonella, a
screening test was performed and 45.8 percent of samples were test-
positive. Screen-test positive samples were enumerated. Qualitative
and quantitative limits of Lqual,y = 0.01cfu/ml and Lquan,y = 0.03cfu/ml
were assumed, respectively.

The percentage of samples where both Campylobacter and Salmonella
were detectedwas 33.1. The percentage of sampleswhereGEC and either
Campylobacter or Salmonella were detected was 70.5 and 45.6 percent,
respectively.

For the sake of comparison, the correlations between the three
species were approximated by calculating the Pearson's correlation
coefficient using only the quantitated samples. The values were
ρ̂�
GEC;Campy ¼ 0:271, ρ̂�

GEC Salm ¼ 0:159, and ρ̂Ca
�

; mpy;Salm ¼ 0:015, with the *
symbol indicating that these estimates were derived by ignoring the
censored observations.

5. Results

The estimated parameter vectors for the three examples are given in
Table 1. The estimated covariance terms are approximately an order of
magnitude smaller than theσ2^ values, so strong correlations are not ex-
pected. The parameter estimates μ̂ andσ2^ demonstrate only slight shifts
between the pairings of different organisms between the univariate and
multivariate analyses. For example, the μ̂X andσ2^X estimates for GEC are

Table 1
Parameter estimates for the θ vector describing the multivariate distributions for the
concentration of GEC, Campylobacter and Salmonella in the FSIS broiler chicken baseline
study data (FSIS, 2008). The parameters describe concentrations on the log10cfu/ml scale.

Species pairing μ̂ ^X σ2 ^X μ ^Y σ2 ^Y σXY

GEC, Campylobacter 2.78 0.65 2.10 2.53 0.122
GEC, Salmonella 2.78 0.65 −2.10 3.05 0.232
Campylobacter, Salmonella 2.10 2.55 −2.10 3.07 0.104
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identical to 2 decimal places in both cases, whereas theσ2^ Y estimates for
Salmonella are 3.05 and 3.07 for the data pairings (GEC, Salmonella) and
(Campylobacter, Salmonella), respectively. Slight shifts in the parameter
estimates are expected because the datasets differ for each species
pairing and themaximum likelihood estimator is accounting for the cor-
relation between the two species. This phenomenon was observed
when a number of different initial values for the parameters were
used and suggests that the maximum likelihood estimator is robust
for this dataset.

The estimated correlation coefficients, as well as the associated 95%
confidence intervals, are presented in Table 2. These estimates are cal-
culated using two methods. The first is the Pearson's correlation coeffi-
cient (Hollander and Wolfe, 1973), which is calculated by ignoring the
censored observations. These results are denoted by a * superscript.
The remaining estimates are derived from the multivariate maximum
likelihood estimator. Confidence intervals for ρ̂XY were derived from
the Σ̂ matrix using the asymptotic normality assumption for the maxi-
mum likelihood estimator (Mood et al., 1973).

The results suggest a weak but significant correlation between GEC
and the two pathogenic organisms, with the correlation being strongest
for GEC and Salmonella. A weak, but positive correlation exists between
Campylobacter and Salmonella, though the confidence interval does not
support the assertion that the correlation is significant. This result also
agreeswith a previous study (Hue et al., 2011), where no positive corre-
lation between concentration of these two pathogenic organisms was
observed.

No consistent patterns exist between the ρ̂�
XY and ρ̂XY values, nor is

their agreement in the relative width of the confidence intervals, even
though the sample size for the multivariate maximum likelihood esti-
mator is much larger. The agreement between ρ̂�

XY and ρ̂XY values is par-
ticularly poor for the data pairing of GEC and Campylobacter. This lack of
agreement should serve as another cautionary example of problems as-
sociated with inferences derived from heavily censored data when the
censored observations are ignored (Shorten et al., 2006). We assume
that the results derived from the maximum likelihood estimator are
more accurate, though such an assumption is still based on the appro-
priateness of the lognormal distribution for these data.

6. Conclusions

This study provides a framework for estimating the correlation be-
tween two different species of bacteria. The correlations observed in
the broiler chicken dataset were not high, so the concentration of GEC
would not be a particularly reliable indicator of concentrations of either
Campylobacteror Salmonella in this application. Instead these results can
be interpreted as indicating that carcasses with the highest levels of
contamination at the beginning of the slaughter process have high
levels of both pathogenic and nonpathogenic organisms. This informa-
tion is useful because a slaughter facility could use sampling informa-
tion on GEC to assess whether additional interventions would be
necessary to achieve a finished product whose total microbial load
was below a predetermined threshold.

Higher correlations are expected to exist between two points in the
slaughter process and additional analyses with these data finds that the
average log reduction in GEC and Salmonella concentrations between
re-hang and post-chill are very similar, with both being slightly more
than 2 log10 (FSIS, 2008). It is expected that the concentrations on indi-
vidual poultry carcasses between re-hang and post-chill would be high-
ly correlated. This is a natural consequence of the non-selective nature
of antimicrobial agents and the simple effect of washing a carcass. This
assertion is supported by the documented steady decline in the levels
of both indicator organisms and pathogenic bacteria from repeated
rinse samples (Lillard, 1988). Note, however, this is a fundamentally dif-
ferent problem than the one outlined here and estimation of the corre-
lationwould require paired samples of the same carcass at two points in
the production process (e.g., re-hang and post-chill). These data, how-
ever, are generally not collected for reasons such as the reduction in or-
ganisms associated with each sampling event and the difficulty of
locating previously sampled carcasses at the end of the production
process.

Computer code, written in the R programming language (Development
Core Team, 2012), is provided as supplementary material.

Appendix A. Supplementary computer code

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ijfoodmicro.2014.01.007.
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