United States Department of Agriculture

Food Safety and Inspection Service

CLG-PST5.10

Screening for Pesticides by UHPLC/MS/MS and GC/MS/MS

Photo courtesy: Getty Images

Photo courtesy: Getty Images

Photo courtesy: Getty Images

This method describes the laboratory procedure for the screening of 108 pesticides in bovine, caprine, equine, ovine, porcine, poultry, fish of the order Siluriformes (catfish) muscle, liquid egg products, and powdered egg.

Table of Contents

Notice of Change	
Introduction	4
Materials and Reagents	6
Equipment	6
Instrumentation	7
Reagents	7
Reference Materials	8
Extraction and Analysis	8
Solution Preparation	8
Standard Preparation	9
Sample Preparation	
Pesticides Extraction	19
Instrumental Analysis	23
Reporting of Results	30
Decision Criteria	30
Minimum Level of Applicability	
References	36
Contact Information and Inquiries	36

Safety Precautions

The personnel performing the analysis must read the Safety Data Sheets (SDS) for the standards and reagents used in this method. Follow applicable federal, state, and local regulations regarding the disposal of chemicals listed in this method.

Introduction

Pesticides are used in agriculture to prevent, mitigate, destroy, or repel pests. The Food Safety and Inspection Service (FSIS) uses this CLG-PST5 method to detect pesticides in animal tissue and egg products. Pesticides are used on crops and as insecticides on the animals themselves. This method analyzes for 108 pesticides in 10 pesticides classes: 9 carbamates, 4 conazoles/triazoles, 9 halogenated, 4 neonicotinoids, 20 organochlorines, 19 organophosphates, 28 general pesticides, 9 pyrethroids, 3 substituted benzenes, and 3 triazines.

Per FMIA, PPIA, and EPIA, FSIS collects and tests samples of domestic and imported meat (including Siluriformes fish products), poultry, and egg products for pesticides to verify that meat, poultry, and egg products meet tolerances and are safe, wholesome, and accurately labeled. The Environmental Protection Agency (EPA) regulates the approval and use of pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act. The Food and Drug Administration (FDA) has the authority to approve and regulate pesticides that are applied to food through the Federal Food, Drug, and Cosmetic Act FSIS works closely with its partner agencies to follow any tolerances set in the Code of Federal Regulations. EPA and FDA set the levels and FSIS collects and samples the product to ensure that any pesticides are below regulated tolerances.

The National Residue Program (NRP) is an interagency program designed to identify, rank, and analyze residues and chemical contaminants in meat, poultry, and egg products. FSIS publishes an Annual Sampling Plan to provide information on the process of sampling meat, poultry, and egg products for pesticides of public health concern. The NRP is monitored and modified annually to set future priorities if data shows trends in detected residues. FSIS uses this multi-residue method to test for pesticides in agency-regulated products.

Method Overview

The following method describes the laboratory procedure for screening of residues (108 total) from various classes of pesticides and environmental contaminants in muscle tissue from beef, goat, sheep, pork, Siluriformes (catfish), liquid egg products and powdered egg.

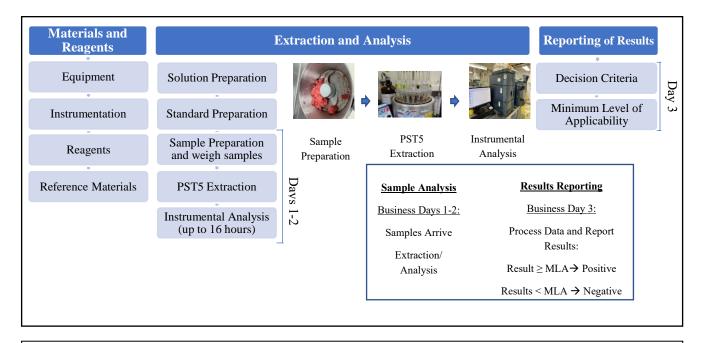
Pesticide residues are extracted from muscle tissue through an extraction with ethyl acetate and QuEChERS salts containing sodium chloride and magnesium sulfate. The crude material is separated through filtration, resulting in an ethyl acetate extract. A solvent exchange is conducted with acetonitrile, which is then followed by a clean-up through precipitation using ultra-low temperature freezing to separate the fats from the samples. The liquid layer is transferred, and solid-phase extraction (SPE) is then used to further clean up the extracts. The extracts are then separated for gas chromatography with tandem mass spectrometry (GC-MS/MS) analysis (37

KEY DEFINITIONS

Solid Phase Extraction (SPE): An extraction technique that utilizes a solid support that contains an adsorbing surface or chemical coating that can interact with analyte.

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe): A solid phase extraction method for detection of pesticide residues in food.

Precipitation: An extraction technique resulting in solid material being left at the bottom of an extraction vessel with the extract or liquid layer containing the analyte. The liquid layer can be separated out for further analysis.


UHPLC-MS/MS: an analytical technique where there is a physical separation of target compounds followed by their mass-based detection.

GC-MS/MS: An analytical technique that involves separation analytes with gas chromatography followed by analysis of masses of individual atoms or molecules through mass spectrometry.²

pesticides) and liquid chromatography with tandem mass spectrometry (UHPLC/MS/MS) analysis (71 pesticides). Prior to GC-MS/MS analysis, the extract is further cleaned up with anion exchange SPE. Prior to UHPLC-MS/MS analysis, the extract is further cleaned up with dispersive SPE and QuEChERS salts containing an anion exchange sorbent.

Both the GC-MS/MS and UHPLC/MS/MS instrumental analyses are independent of one another. In the case that an instrument is not available, samples can continue to undergo through the

respective extraction and clean-up processes with the results for the available system being reported while excluding the results for unavailable instrument. Additionally, this method may be performed using standards or solutions that contain fewer analytes than the method applicability. When that occurs, the excluded analytes would not be included in the reported results.

Figure 1: Overview and timeframe of Pesticides (PST5). Materials and reagents are obtained and utilized to prepare solutions and standards. The samples arrive at laboratory, are prepared into a homogenized mixture, weighed, extracted, and analyzed by UHPLC-MS/MS on business days 1-2. Screening results are reported on business day 3. This figure represents the best-case scenarios, but analyses may take longer. Photos courtesy of Hue Quach, USDA FSIS and Ryan Matsuda, USDA FSIS.

Decision Criteria

A sample is considered negative if the results are less than the minimum level of applicability (MLA). A sample is considered a screened positive if the results are greater than or equal to the MLA. Screened positive results will require further analysis through additional methods.

KEY DEFINITIONS

MLA: Lowest level at which an FSIS method has been successfully validated for a residue in each matrix. Full definition is on the CLG website here.

Disclosure Statement

FSIS does not specifically endorse any test products listed in this method. FSIS acknowledges that equivalent equipment, reagents, or solutions may be suitable for laboratory use. The FSIS laboratory system uses method performance requirements when evaluating the equivalence of an alternative equipment, reagent, or solution for a given analyte and sample matrix pair. Significant equivalence changes would require FSIS laboratory leadership approval.

Materials and Reagents

Equipment

Table 1: Equipment Required to Perform CLG-PST5

Equipment	Supplier and Part Number	Purpose
Food Processor	Robot Coupe USA, Inc	Homogenize sample
Analytical Balance	General lab supplier	Record weight of standard reagent. Minimum accuracy ±0.0001g
Top Loading Balance	General lab supplier	Record weight of standard reagent. Minimum accuracy Minimum accuracy ±0.01g
Microcentrifuge	General lab supplier	Separates the solid sample material from the extraction solution
Centrifuge	General lab supplier	Separates the solid sample material from the extraction solution Capable of centrifuging 50 mL glass test tubes
Centrifuge tubes,	SARSTEDT, 62.547.205	Contain sample material and
Polypropylene (PP), 50 mL		extraction vessel
Centrifuge tubes, glass, 50 mL	General lab supplier	Contain extraction solution and extraction vessel, Pyrex tube with stopper
Centrifuge tubes, glass, 15mL	Kimble Chase, 45166-15	Contain extraction solution and extraction vessel, Pyrex tube with stopper
Shaker	General lab supplier	Facilitates extraction of pesticides from the sample
Multi Tube Vortex	General lab supplier	Facilitates extraction of pesticides from the sample
Freezer, -20 °C	General lab supplier	Storage of standards and reagents
Nitrogen Evaporator Apparatus with Heated Water Bath	General lab supplier	Reduces extraction solution down to desired volume
Positive Pressure Manifold	UCT, LLC, VMFPPM16	Perform SPE Clean Up
1000 mg C18 SPE Columns	UCT, LLC, CEC181M6	Separates out the pesticides from the extraction solution
Fluted filter paper	VWR, 28333-043	Filter extracts
Nylon Syringe Filter, 0.2 μm	VWR International., 28143-242	Dispersive solid phase extraction
500 mg (Primary Secondary Amine) SPE Columns	UCT, LLC, CUPSA156	Clean up sample for GC-MS/MS analysis

Micro centrifuge tubes with	UCT, LLC, CUMPS2CT	Clean up sample for LC-MS/MS
QuEChERS salts (150 mg		analysis
MgSO4 & 50 mg PSA)		
Dispensers	General lab supplier	Dispense standards and reagents
Repeating pipettes and tips	General lab supplier	Dispense standards and reagents
Disposable Pasteur Pipettes	General lab supplier	Dispense standards and reagents
Disposable Transfer Pipettes	General lab supplier	Dispense standards and reagents
Syringe, Plastic, 3mL	Becton Dickenson, 309657	Filter final extracts
Auto Sampler Vials	General lab supplier	Store final extractions for analysi

Instrumentation

Measuring standards and reagents

General lab supplier

Table 2: Instrumentation

Glassware, Class A

Instrument	Supplier and Model Number	Purpose
Waters UPLC-MS/MS System	Waters Xevo I-Class LC,	Extract analysis
	Waters Xevo TQ-S micro	
	Mass Spectrometer	
Waters UPLC HSS T3,	Waters, 186003539	Extract analysis
2.1 × 100 mm, 1.8μm		
Waters VanGuard Pre-column UHPLC	Waters, 186003976	Extract analysis
HSS T3, 2.1×5.0 mm, $1.8 \mu m$		
Gas Chromatograph	Agilent, 7890B	Extract analysis
GC Quadrupole Mass Spectrometer	Agilent, 7010	Extract analysis
Agilent, J&W HP-5MS Ultra Inert	Agilent, 19091S-431UI. Two	Extract analysis
15m, 0.25mm, 0.25um 7in cage, two	columns are used in a series	
columns are used in series	columns are used in a series	

Reagents

Table 3: Reagents

Reagent	Supplier and Part Number
QuEChERS Salts Packets (8g MgSO4 & 2 g NaCl)	UCT, LLC, ECQUVIN50CT-MP
Magnesium sulfate, anhydrous	General lab supplier
Acetic acid – ACS Grade	General lab supplier
Ethyl acetate – LC Grade	General lab supplier
Acetonitrile (ACN) – LC Grade	General lab supplier
Acetone – LC Grade	General lab supplier
Toluene – LC Grade	General lab supplier
Methanol – LC Grade	General lab supplier
Ammonium Acetate	General lab supplier
Formic Acid – ACS Grade	General lab supplier

CLG-PST5.10 Screenin	g for Pesticides b	v UHPLC/MS/MS and GC/MS/MS	Revision: .10 (Replaces: .09)	Effective: 06/12/23

Water – Resistivity of $> 18 \text{ M}\Omega$ -cm	House system
Isopropanol – LC-MS Grade	General lab supplier

Reference Materials

Table 4: Reference Materials

Standard	Supplier	Catalog Number
Custom Pesticide Standard		
(Internal standard Trichloronate	Accustandard	S-23242
and Ethoprophos		
Custom Pesticide Standard	Accustandard	S-66100-01
Custom Pesticide Standard	Accustandard	S-66100-02
Custom Pesticide Standard	Accustandard	S-63904-01-R1
Custom Pesticide Standard	Accustandard	S-63904-02
Custom Pesticide Standard	Accustandard	S-63903-R1-SET
Ethion Monoxon Standard	EPA	F714

Purity and counterions are to be taken into account when calculating standard concentrations. Inhouse prepared standards are to be assigned an expiration date that is no later than the stability stated in the method.

Extraction and Analysis		
Solution Preparation		

Table 5: Preparation of Solutions

Solution	Procedure	
1% Acetic acid/Acetonitrile	1) Using a graduated cylinder measure 1980 mL of acet	onitrile.
(by Volume)	2) Using a graduated cylinder measure 20 mL of acetic	acid.
	3) Combine and mix in a 2L glass storage container for	use.
Solution expires one year		
from preparation date.		
LC/MS/MS Mobile Phase A	1) Measure 0.771 g ammonium acetate.	
(5 mM ammonium	2) Dissolve and transfer the ammonium acetate to a 2 L	
acetate/0.1% formic acid in	graduated cylinder or volumetric flask with water.	
water by volume)	3) Measure and add 2 mL of formic acid to same cylind volumetric flask.	er or
Solution expires one year	4) Dilute to volume with water.	
from preparation date.	5) Mix well and transfer to glass storage container for u	se.
LC/MS/MS Mobile Phase B	1) Measure 2 mL of formic acid and add to a 2 L gradu	ated
(0.1% formic acid in	cylinder or volumetric flask.	
methanol by volume)	2) Dilute to volume with methanol.	
	3) Mix well and transfer to glass storage container for u	ise.
Solution expires one year		
from preparation date.		

3:1 v/v Acetone/Toluene	1)	,		
	- \	cylinder.		
	2)	Measure 1500 mL of acetone and add to same cylinder.		
Solution expires one year from preparation date.	3)	Mix well for use.		
LC/MS/MS Weak Wash	1)	Measure 100 mL of methanol and add to a 1 L glass		
(10% methanol in water		storage container.		
by volume)	2)	Measure 900 mL of water and add to same container.		
	3)	Mix well for use.		
Solution expires one year				
from preparation date.				
LC/MS/MS Strong Wash	1)	Measure 250 mL of acetonitrile and add to a 1 L glass		
(0.5% formic acid in 1:1:1:1		storage container.		
acetonitrile: methanol:	2)	Measure 250 mL of methanol and add to same container.		
isopropanol: water)	3)	Measure 250 mL of isopropanol and add to same container		
	4)	Measure 250 mL of water and add to same container.		
Solution expires one year	5)	Measure 5.0 mL formic acid and add to same container.		
from preparation date.	6)	Mix well for use.		

Standard Preparation

Table 6: GC Mixed Pesticide Standard

Cmpd			Stock Conc.	Spiking Solution Conc.
#	Pesticide	CAS#	(μg/mL ethyl acetate)	(µg/mL ethyl acetate)
1	1-Naphthol	90-15-3	60	6
2	Aldrin	309-00-2	50	5
3	Bifenthrin	82657-04-3	10	1
4	Chlordane cis	5103-71-9	20	2
5	Chlordane trans	5103-74-2	20	2
6	Chloroneb	2675-77-6	18	1.8
7	Chlorothalonil	1897-45-6	120	12
8	Chlorpropham	101-21-3	60	6
9	Chlorpyrifos	2921-88-2	15	1.5
10	Chlorpyrifos methyl	5598-13-0	10	1
11	DDD o,p'	53-19-0	100	10
		72-54-8 &		
12	DDD p,p' + DDT o,p'	789-02-6	100+100	10+10
13	DDE o,p'	3424-82-6	100	10

Cmpd			Stock Conc.	Spiking Solution Conc.
#	Pesticide	CAS#	(μg/mL ethyl acetate)	(μg/mL ethyl acetate)
14	DDE p,p'	72-55-9	100	10
15	DDT p,p'	50-29-3	100	10
16	Dieldrin	60-57-1	50	5
17	Endosulfan I	959-98-8	100	10
18	Endosulfan II	33213-65-9	100	10
19	Endosulfan sulfate	1031-07-8	100	10
20	Fenpropathrin	39515-41-8	50	5
21	Fipronil	120068-37-3	10	1
22	Fipronil desulfinyl	205650-65-3	10	1
23	Fipronil sulfide	120067-83-6	10	1
24	Heptachlor	76-44-8	50	5
25	Heptachlor epoxide (cis&trans) or (B+A)	1024-57-3 & 28044-83-9	50+50	5+5
26	Hexachlorobenzene (HCB)	118-74-1	50	5
27	Lindane (BHC gamma)	58-89-9	80	8
28	MGK-264 (isomers 1&2)	113-48-4	100	10
29	Metolachlor	51218-45-2	20	2
30	Nonachlor cis	5103-73-1	30	3
31	Nonachlor trans	39765-80-5	30	3
32	Oxychlordane	27304-13-8	20	2
33	Pentachloroaniline (PCA)	527-20-8	50	5
34	Pentachlorobenzene (PCB)	608-93-5	20	2
35	Permethrin (cis&trans)	52645-53-1	50	5
36	Pronamide	23950-58-5	10	1
37	Tefluthrin	79538-32-2	10	1

Table 7: LC Mixed Pesticide Standard

Cmpd	1		Stock Conc.	Spiking Solution Conc.
#	Pesticide	CAS#	(μg/mL ethyl acetate)	(µg/mL ethyl acetate)
38	3-Hydroxycarbofuran	16655-82-6	10	1
39	Acephate	30560-19-1	20	2
40	Acetamiprid	135410-20-7	10	1
41	Alachlor	15972-60-8	10	1
42	Aldicarb	116-06-3	20	2
43	Aldicarb sulfone	1646-88-4	20	2
44	Aldicarb sulfoxide	1646-87-3	50	5
45	Atrazine	1912-24-9	20	2
46	Azinphos methyl	86-50-0	20	2
47	Azoxystrobin	131860-33-8	10	1
48	Benoxacor	98730-04-02	10	1
49	Boscalid	188425-85-6	30	3
50	Buprofezin	69327-76-0	50	5
51	Carbaryl	63-25-2	50	5
52	Carbofuran	1563-66-2	10	1
53	Carfentrazone ethyl	128639-02-1	10	1
54	Clothianidin	210880-92-5	20	2
55	Coumaphos O	321-54-0	20	2
56	Coumaphos S	56-72-4	20	2
57	Desethylatrazine	6190-65-4	20	2
58	Diazinon	333-41-5	10	1
59	Dichlorvos (DDVP)	62-73-7	20	2
60	Difenoconazole	119446	30	3
61	Diflubenzuron	35367-38-5	25	2.5
62	Dimethoate	60-51-5	20	2
63	Diuron	330-54-1	160	16
64	Ethion	563-12-12	20	2
65	Ethion monoxon	17356-42-2	20	2
66	Ethofumesate	26225-79-6	40	4

CLG-PST5.10 Screening for Pesticides by UHPLC/MS/MS and GC/MS/MS	Revision: .10 (Replaces: .09)	Effective: 06/12/23
· ·	· • · · ·	

Cmpd			Stock Conc.	Spiking Solution Conc.
#	Pesticide	CAS#	(μg/mL ethyl acetate)	(µg/mL ethyl acetate)
67	Fenoxaprop ethyl	66441-23-4	20	2
68	Fluridone	59756-60-4	50	5
69	Fluroxypyr-1- Methylheptyl-Ester	81406-37-3	10	1
70	Fluvalinate	102851-06-9	15	1.5
71	Hexazinone	51235-04-2	60	6
72	Hexythiazox	78587-05-0	20	2
73	Imazalil	35554-44-0	10	1
74	Imidacloprid	138261-41-3	50	5
75	Indoxacarb	144171-61-9	50	5
76	Linuron	330-55-2	50	5
77	Malathion	121-75-5	80	8
78	Metalaxyl	57837-19-1	20	2
79	Methamidophos	10265-92-6	20	2
80	Methomyl	16752-77-5	60	6
81	Methoxyfenozide	161050-58-4	10	1
82	Metribuzin	21087-64-9	100	10
83	Myclobutanil	88671-89-0	20	2
84	Norflurazon	27314-13-2	20	2
85	Omethoate	1113-02-6	20	2
86	Piperonyl butoxide	51-03-6	45	4.5
87	Pirimiphos methyl	29232-93-7	20	2
88	Prallethrin	23031-36-9	80	8
89	Profenofos	41198-08-7	20	2
90	Propachlor	1918-16-7	20	2
91	Propanil	709-98-8	50	5
92	Propetamphos	31218-83-4	15	1.5
93	Propiconazole	60207-90-1	30	3
94	Pyraclostrobin	175013-18-0	100	10
95	Pyrethrin I	8003-34-7	56 (92)	5.6 (9.2)

Cmpd			Stock Conc.	Spiking Solution Conc.
#	Pesticide	CAS#	(μg/mL ethyl acetate)	(μg/mL ethyl acetate)
96	Pyrethrin II	8003-34-7	62	6.2
97	Pyridaben	96489-71-3	18	1.8
98	Pyriproxyfen	95737-68-1	40	4
99	Resmethrin (cis& trans)	10453-86-8	100	10
100	Simazine	122-34-9	20	2
101	Sulprofos	34500-43-2	50	5
102	Tebufenozide	112410-23-8	80	8
103	Tetrachlorvinphos	22248-79-9	20	2
104	Tetraconazole	11281-77-3	10	1
105	Thiabendazole	148-79-8	30	3
106	Thiamethoxam	153719-23-4	20	2
107	Thiobencarb	28249-77-6	100	10
108	Trifloxystrobin	141517-21-7	10	1
	1			

Table 8: Ethion monoxon solutions

Individual ethion monoxon stock	1) Weigh approximately 10 mg of ethion monoxon,
solutions (~1.0 mg/mL in ethyl acetate):	into a 10 mL volumetric flask. Weigh this
	amount to the nearest 0.1 mg.
	Determine final concentration of ethion monoxon
This standard is stable for 1 year when	based on purity of stock standard.
stored at < -10°C.	2) Dilute to volume with ethyl acetate.
	3) Mix well and transfer to glass storage container.
Intermediate standard solution of ethion	1) Calculate amount of ethion monoxon stock
monoxon (100 µg/mL)	solution to prepare 10 mL of 100 μg/mL solution
	of ethion monoxon and pipette that amount into a
This standard is stable for 1 seconds as	10 mL volumetric flask.
This standard is stable for 1 year when stored at < -10°C.	2) Dilute to volume with ethyl acetate.
Stored at < 10 C.	3) Mix well and transfer to glass storage container.

Table 9: Mixed Pesticides spiking solution in Ethyl Acetate

Mixed Pesticide Spiking Solution:	1) Measure 5 mL of each pesticide standard and add to a 50 mL volumetric flask.
Spiking solutions are stored at ≤ -10 °C and expire one year from the preparation date.	2) Dilute to volume with ethyl acetate.3) Mix well and transfer to glass storage container.

Table 10: Preparation of Internal Standard

Internal Standard Spiking Solution (20 µg/mL Trichloronate & 10 µg/mL Ethoprofos):	 Measure 1.0 mL of the pesticide internal standard and add to a 50 mL volumetric flask. Dilute to volume with ethyl acetate. Mix well and transfer to glass storage container.
Spiking solutions are stored at ≤ -10 °C and expire one year from the preparation date.	

Table 11: Preparation of Injection Standard for LC and GC compounds

Muscle Injection Standard for LC compounds:	1) Measure 200 µL of internal standard spiking solution and add to a 10 mL volumetric flask.
Injection standards are stored at	2) Measure 200 µL of mixed pesticide spiking solution and add to the same flask.
≤-10 °C and expire in one month.	3) Dilute to volume with acetonitrile.
	4) Mix well and transfer to glass storage container.
Egg Injection Standard for LC compounds:	1) Measure 33.3 µL of internal standard spiking solution and add to a 10 mL volumetric flask.
	2) Measure 33.3 µL of mixed pesticide spiking solution and add to the same the flask.
Injection standards are stored at	3) Dilute to volume with acetonitrile.
≤ -10 °C and expire in one month.	4) Mix well and transfer to glass storage container.
Muscle Injection Standard for GC	1) Measure 200 µL of internal standard spiking
compounds:	solution and add to a 10 mL volumetric flask.
	2) Measure 200 µL of mixed pesticide and add to
	the same flask.
Injection standards are stored at	3) Dilute to volume with toluene.
≤ -10 °C and expire in one month.	4) Mix well and transfer to glass storage container.
Egg Injection Standard for GC	1) Measure 33.3 µL of internal standard spiking
compounds:	solution and add to 10 mL volumetric flask.
_	2) Measure 33.3 µL of mixed pesticide spiking
	solution and add to the same flask.
Injection standards are stored at	3) Dilute to volume with toluene.
≤ -10 °C and expire in one month.	4) Mix well and transfer to glass storage container.

Table 12: Concentration of GC and LC Injection Standard

Cmpd#	Name	Muscle Injection Standard Conc. (µg of pest./mL of solution)	Egg Injection Standard Conc. (µg of pest./mL of solution)
	GC Mixed Standard	zerawen)	501401011)
1	1-Naphthol	0.12	0.0200
2	Aldrin	0.1	0.0167
3	Bifenthrin	0.02	0.00333
4	Chlordane cis	0.04	0.00666
5	Chlordane trans	0.04	0.00666
6	Chloroneb	0.036	0.00599
7	Chlorothalonil	0.24	0.0400
8	Chlorpropham	0.12	0.0200
9	Chlorpyrifos	0.03	0.00500
10	Chlorpyrifos methyl	0.02	0.00333
11	DDD o,p'	0.2	0.0333
12	DDD p,p' + DDT o,p'	0.2 + 0.2	0.0333 + 0.0333
13	DDE o,p'	0.2	0.0333
14	DDE p,p'	0.2	0.0333
15	DDT p,p'	0.2	0.0333
16	Dieldrin	0.1	0.0167
17	Endosulfan I	0.2	0.0333
18	Endosulfan II	0.2	0.0333
19	Endosulfan sulfate	0.2	0.0333
20	Fenpropathrin	0.10	0.0167
21	Fipronil	0.02	0.00333
22	Fipronil desulfinyl	0.02	0.00333
23	Fipronil sulfide	0.02	0.00333
24	Heptachlor	0.1	0.0167
25	Heptachlor epoxide (cis&trans) or (B+A)	0.1 + 0.1	0.0167 + 0.0167
26	Hexachlorobenzene (HCB)	0.1	0.0167
27	Lindane (BHC gamma)	0.16	0.0266
28	MGK-264 (isomers 1&2)	0.2	0.0333
29	Metolachlor	0.04	0.00666
30	Nonachlor cis	0.06	0.00999

		Muscle Injection Standard Conc. (µg of pest./mL of	Egg Injection Standard Conc. (μg of pest./mL of
Cmpd #	Name	solution)	solution)
31	Nonachlor trans	0.06	0.00999
32	Oxychlordane	0.04	0.00666
33	Pentachloroaniline (PCA)	0.1	0.0167
34	Pentachlorobenzene (PCB)	0.04	0.00666
35	Permethrin (cis&trans)	0.1	0.0167
36	Pronamide	0.02	0.00333
37	Tefluthrin	0.02	0.00333
	LC Mixed Standard	D.2.c	D.2.d
38	3-Hydroxycarbofuran	0.02	0.00333
39	Acephate	0.04	0.00666
40	Acetamiprid	0.02	0.00333
41	Alachlor	0.02	0.00333
42	Aldicarb	0.04	0.00666
43	Aldicarb sulfone	0.04	0.00666
44	Aldicarb sulfoxide	0.1	0.0167
45	Atrazine	0.04	0.00666
46	Azinphos methyl	0.04	0.00666
47	Azoxystrobin	0.02	0.00333
48	Benoxacor	0.02	0.00333
49	Boscalid	0.06	0.00999
50	Buprofezin	0.1	0.0167
51	Carbaryl	0.1	0.0167
52	Carbofuran	0.02	0.00333
53	Carfentrazone ethyl	0.02	0.00333
54	Clothianidin	0.04	0.00666
55	Coumaphos O	0.04	0.00666
56	Coumaphos S	0.04	0.00666
57	Deethylatrazine	0.04	0.00666
58	Diazinon	0.02	0.00333
59	Dichlorvos (DDVP)	0.04	0.00666
60	Difenoconazole	0.06	0.00999
61	Diflubenzuron	0.05	0.00833

Cmpd#	Name	Muscle Injection Standard Conc. (µg of pest./mL of solution)	Egg Injection Standard Conc. (μg of pest./mL of solution)
62	Dimethoate	0.04	0.00666
63	Diuron	0.32	0.0533
64	Ethion	0.04	0.00666
65	Ethion monoxon	0.04	0.00666
66	Ethofumesate	0.08	0.0133
67	Fenoxaprop ethyl	0.04	0.00666
68	Fluridone	0.1	0.0167
69	Fluroxypyr-1-Methylheptyl-Ester	0.02	0.00333
70	Fluvalinate	0.02	
			0.00500
71	Hexazinone	0.12	0.0200
72	Hexythiazox	0.04	0.00666
73	Imazalil	0.02	0.00333
74	Imidacloprid	0.1	0.0167
75	Indoxacarb	0.1	0.0167
76	Linuron	0.1	0.0167
77	Malathion	0.16	0.0266
78	Metalaxyl	0.04	0.00666
79	Methamidophos	0.04	0.00666
80	Methomyl	0.12	0.0200
81	Methoxyfenozide	0.02	0.00333
82	Metribuzin	0.2	0.0333
83	Myclobutanil	0.04	0.00666
84	Norflurazon	0.04	0.00666
85	Omethoate	0.04	0.00666
86	Piperonyl butoxide	0.09	0.0150
87	Pirimiphos methyl	0.04	0.00666
88	Prallethrin	0.16	0.0266
89	Profenofos	0.04	0.00666
90	Propachlor	0.04	0.00666
91	Propanil	0.1	0.0167
92	Propetamphos	0.03	0.00500
93	Propiconazole	0.06	0.00999

		Muscle Injection	Egg Injection
		Standard Conc. (µg	Standard Conc. (µg
		of pest./mL of	of pest./mL of
Cmpd #	Name	solution)	solution)
94	Pyraclostrobin	0.2	0.0333
95	Pyrethrin I	0.184	0.0306
96	Pyrethrin II	0.124	0.0206
97	Pyridaben	0.036	0.00599
98	Pyripoxyfen	0.08	0.0133
99	Resmethrin (cis&trans)	0.2	0.0333
100	Simazine	0.04	0.00666
101	Sulprofos	0.1	0.0167
102	Tebufenozide	0.16	0.0266
103	Tetrachlorvinphos	0.04	0.00666
104	Tetraconazole	0.02	0.00333
105	Thiabendazole	0.06	0.00999
106	Thiamethoxam	0.04	0.00666
107	Thiobencarb	0.2	0.0333
108	Trifloxystrobin	0.02	0.00333
	Internal Standards		
109	Trichloronate	0.4	0.0666
110	Ethoprophos	0.2	0.0333

Sample Preparation

Preparation of Samples and Quality Controls

Samples must be kept cold before and during shipping to the laboratory. Once received at the laboratory, muscle samples must be frozen (≤ -10 °C) prior to grinding if they cannot be prepared on the day of receipt. Once frozen, temper (partially thaw) while keeping it as cold as possible. As shown in Figure 2, trim away fat and connective tissue. Grind tissue in blender or vertical cutter-mixer until homogeneous, as shown in Figure 3. Store samples frozen (\leq -10 °C) prior to analysis.

Figure 2: Prepared lean muscle sample with connective tissue removed. Photo courtesy of Hue Quach, USDA FSIS.

Figure 3: Homogenized sample. Photo courtesy of Hue Quach, USDA FSIS.

Both liquid and powdered egg products require no sample preparation. An example of a liquid egg product is shown in Figure 4.

Figure 4: Liquid egg samples. Photo courtesy of Hue Quach USDA FSIS.

Pesticides Extraction

Samples

Weigh 20.0 ± 0.20 g of homogenized muscle sample, 5.0 ± 0.04 g of liquid egg product, or 2.5 ± 0.04 g powdered egg product into a 50 mL polypropylene centrifuge tube, as shown in Figure 5. Make sure the sample is all the way down in the tube.

QUALITY CONTROL

- 1. Weigh three 20.0 ± 0.2 g portions of blank muscle tissue, 5.0 ± 0.04 g portions for liquid egg, and 2.5 ± 0.04 portions for powdered egg into 50 mL polypropylene centrifuge tubes. One for the blank (negative control), one for the decision level control, and one for the positive control. Weigh one additional portion for a check sample, if applicable.
- Prepare decision level and recovery control by fortifying the sample with 100 μL for muscle and 25 μL for the liquid and powdered egg of the appropriate fortification standard.
- 3. Allow the sample to dry about five minutes (min) before continuing to the extraction.

Figure 5: Weighed controls and samples. Photo courtesy of Ryan Matsuda, USDA-FSIS

Extraction

- 1. Add 30 mL of ethyl acetate to each sample as shown in Figure 6.
- 2. Fortify each sample and each control with 100 μ L, for muscle, or 25 μ L, for eggs, of the internal standard spiking solution and cap centrifuge tube. Invert, vortex, or shake tubes to homogenize (or shred) tissue and ensure solvent reaches the entire sample.
- 3. Place samples on the shaker for one minute to mix.

Figure 6: Ethyl acetate added to controls and samples Photo courtesy of Ryan Matsuda USDA-FSIS

4. Add 8 g of MgSO₄ and 2 g NaCl (pre-weighed QuEChERS salts) to each sample and cap tube as shown in Figure 7. Invert, vortex, or shake tubes to homogenize (or shred) tissue and ensure solvent reaches the entire sample as shown in Figure 8.

Figure 8: Samples with QuEChERS salts. Photo courtesy of Jason Stone USDA-FSIS

Key Fact:

Make sure the solvent interacts well with the entire sample and the crystalline agglomerates are broken up sufficiently.

- 5. Shake vigorously for five min on the shaker.
- 6. Place samples into the \leq -20 °C freezer for 30 min.
- 7. Remove samples from freezer and centrifuge at 3000 RCF for 8 min.
- 8. As shown in Figure 9, decant more than 18 mL of the ethyl acetate layer into a 50 mL graduated glass centrifuge tube using a funnel and filter paper.
- 9. Adjust the volume of muscle samples to 18 mL and of egg samples to 12 mL, discarding the excess.
- 10. Concentrate the extract under nitrogen in a 65 ± 5 °C water bath until the volume remains constant. This volume is typically 0.5 mL to 2.0 mL, as shown in Figure 10.
- 11. Dilute to 15 mL with acetonitrile, cap glass tube and vortex for one minute.
- 12. Place samples in \leq -70 °C freezer for 30 min.

Figure 9: Samples undergoing filtration. Photo courtesy of Ryan Matsuda USDA-FSIS

Figure 10: Samples undergoing evaporation. Photo courtesy of Ryan Matsuda USDA-FSIS

13. After removing samples from the freezer, let them sit until the stopper can be removed from each sample tube and recap them. This will prevent pressure from building up while in the centrifuge and tubes breaking. Centrifuge the extract while frozen for 3.5 min at 1050 RCF.

Key Fact:

Acetonitrile will thaw during centrifugation.

14. To minimize disruption of the pellet, transfer 10 mL to another vessel prior to SPE.

15. Prepare a solid phase extraction (SPE) column containing 1000 mg C₁₈ by adding approximately 2 g anhydrous MgSO₄ to the top of the C₁₈ layer.

Key Fact:

To save time during the analysis, prepare SPE columns containing MgSO₄ ahead of time and store in a desiccator.

- 16. Using a positive pressure SPE manifold (PPM), condition the SPE cartridge with 5 mL of 1% acetic acid/acetonitrile and elute to waste, as shown in Figure 11.
- 17. Place properly labeled 15 mL graduated glass tubes in the collection rack below SPE cartridges.
- 18. Transfer the 10 mL of sample extract into the SPE column from the previous vessel and pass the extract through the column using a regulated flow pressure of not greater than 35 psi.

Figure 11: Solid phase extraction manifold. Photo courtesy of Ryan Matsuda USDA-FSIS

Key Fact:

Be careful not to overfill the SPE columns.

19. After the extract has completely passed through the column, add two aliquots of 2.5 mL of 1% acetic acid/acetonitrile to elute the sample from the column. (Change gas flow to full flow for approximately one minute to completely elute the extract from the column.)

Optional Stopping Point:

This is an optional stopping point. If stopping overnight, samples should be capped and stored at \leq -20 °C.

20. As shown in Figure 12, concentrate each sample to less than 2 mL (final sample volume) under nitrogen in a 65 ± 5 °C water bath. Adjust all samples to 2 mL with acetonitrile.

Figure 12: Samples undergoing evaporation. Photo courtesy of Ryan Matsuda USDA-FSIS

Prepare Extract for UHPLC/MS/MS Analysis

- 1. Transfer 1 mL of the extract from step 20. to a 2 mL mini-centrifuge tube that contains 50 mg PSA (primary secondary amine) and 150 mg of MgSO₄.
- Vortex the mini-centrifuge tubes for 1 min. 2.
- 3. As shown in Figure 13, centrifuge the mini-centrifuge tubes for two min at 10,000 RCF.
- 4. Transfer the sample extract to a 3 mL plastic syringe with a 0.2 µm Nylon syringe filter and filter extract into a labeled autosampler vial. Analyze vial by UHPLC/MS/MS.

Figure 13: Samples undergoing centrifugation. Photo courtesy of Ryan Matsuda USDA-FSIS

Prepare Extract for GC/MS/MS Analysis

- Using a PPM, condition a 500 mg PSA SPE column with 1. 4 mL of 3:1 v/v acetone/toluene and elute to waste.
- Place properly labeled 15 mL graduated glass tubes in 2. the collection rack below SPE columns.
- 3. Using a Pasteur pipette, transfer the remainder of the sample extract from step 20. to the SPE column, as illustrated in Figure 14.
- Elute the extract through the column using a regulated 4. flow pressure of not greater than 35 psi with 4 mL of 3:1 v/v acetone/toluene.

Figure 14: Samples undergoing SPE cleanup for GC-MS/MS Analysis. Photo courtesy of Ryan Matsuda USDA-FSIS

- 5. Collect the eluate while washing the SPE column two times with 4 mL of 3:1 v/v acetone/toluene (eluant). Do not allow the SPE column to go dry.
- 6. After the last 4 mL portion of eluant has passed through the column move the switch of the PPM from "Regulated Flow" to "Full Flow/Dry" and
- 7. Evaporate the sample to less than 0.5 mL under nitrogen in a 65 ± 5 °C water bath, as shown in Figure 15.

dry the column for one minute.

- 8. Add 3 mL of toluene to centrifuge tube and vortex.
- 9. Evaporate again to less than 0.5 mL to ensure all other solvents have been removed.

Figure 15: Samples undergoing evaporation for final toluene step. Photo courtesy of Ryan Matsuda USDA-FSIS

- 10. Bring the volume to 1.0 mL with toluene and vortex to mix.
- Transfer the sample to a labeled autosampler vial. Analyze by GC/MS/MS. 11.

Instrumental Analysis

An example of a UHPLC/MS-MS instrument and a GC/MS-MS instrument are shown in Figure 16 and Figure 17, respectively.

UHPLC/MS/MS Instrumental Settings

Chromatographic Parameters

1) Mobile phases for pesticide analysis

a) Mobile Phase A-5 mM ammonium acetate/0.1% formic acid in water

b) Mobile Phase B - 0.1% formic acid in methanol

2) Flow rate: 0.5 mL/min

3) Run time: 12 min4) Gradient Program

Table 13 UHPLC Gradient Program

Time (min)	% Mobile Phase A	% Mobile Phase B	Gradient
Initial	90%	10%	none
0.25	90%	10%	none
7.75	2%	98%	linear
10.50	2%	98%	linear
10.55	90%	10%	none
12	90%	10%	linear

5) Autosampler program

a) Run time: 12 min

b) Injection needle: 15 µL

c) Sample injection mode: Flow through needle

d) Injection volume: 1 μ L for muscle samples, 2 μ L for egg samples

e) Weak Wash: 10% methanol in water

f) Strong Wash: 0.5% formic acid in 1:1:1:1 acetonitrile: methanol: isopropanol: water

6) Column manager

a) Column valve position: To match column location

b) Column manager temperature: 50 °C

Instrumental Note:

Autosampler parameters can be modified or optimized if needed to ensure that all chromatographic peaks are present.

Mass Spectrometry Parameters

1. Type: MS/MS

2. Electrospray Source Parameters

a) Capillary (kV): 3.5

b) Multiplier: - 640V

c) Dwell time: varied from 0.025-0.2s

d) Cone (V): Variable - analyte dependent

e) Extractor (V): 3.0

f) RF (V): 0.10

g) Source Temperature (°C): 150

h) Desolvation Temperature (°C):

Cone Gas Flow (L/hr): 25

Desolvation Gas Flow (L/hr):

k) Collision Gas Flow (mL/min): 0.25

3. Analyzer Parameters

a) LM1 Resolution 3.5

b) HM 1 Resolution: 15

c) Ion Energy 1: -0.8

d) MSMS Mode Entrance: -5

e) MSMS Mode Collision Energy: Variable – analyte dependent

f) MSMS Mode Exit: 1

g) LM 2 Resolution: 12.50

h) HM 2 Resolution: 12.50

Ion Energy 2: 0.2

4. MS Method Parameters:

a) Type: MRM

b) Ion Mode: ES+

c) MRM Transitions:

Instrumental Note:

Mass spectrometry parameters are optimized and adjusted as needed during annual preventative maintenance and calibration.

Figure 16: Example of a UHPLC-MS/MS instrument. Photo courtesy of Ryan Matsuda USDA-FSIS

Table 14 – LC MRM Transitions

Cmpd #	Pesticide	RT (min)	Cone (V)	First transition (m/z)	Coll En (V)	Second transition (m/z)	Coll En (V)	Quant Ion
1	3-Hydroxycarbofuran	3.57	15	255.2 < 163	18	255.2 < 181	15	163
2	Acephate	1.53	20	184.1 < 125	16	184.1 < 143	12	143
3	Acetamiprid	3.57	40	223 < 56	16	223 < 126	16	126
4	Alachlor	6.61	27	269.8 < 161.9	19	269.8 < 237.8	11	237.8
5	Aldicarb	4.23	12	190.8 < 88.7	13	190.8 < 115.8	5	115.8
6	Aldicarb sulfone	2.16	23	223 < 76	7	223 < 86	12	86
7	Aldicarb sulfoxide	1.98	16	207 < 89	14	207 < 132	10	89
8	Atrazine	5.49	35	216.1 < 104	26	216.1 < 174.1	18	174.1
9	Azinphos methyl	5.82	22	317.7 < 124.8	35	317.7 < 131.9	30	131.9
10	Azoxystrobin	6.01	30	404.1 < 344.2	26	404.1 < 372.1	14	372.1
11	Benoxacor	5.86	22	259.7 < 133.8	29	259.7 < 148.9	17	148.9
12	Boscalid	6.17	22	342.8 < 271.3	33	342.8 < 306.7	19	306.7
13	Buprofezin	7.52	22	306 < 115.9	15	306 < 201	11	201
14	Carbaryl	5.04	20	202.2 < 127	28	202.2 < 145	15	145
15	Carbofuran	4.87	25	222.2 < 123	23	222.2 < 165	13	123
16	Carfentrazone ethyl	6.83	37	412 < 345.7	23	412 < 365.6	17	345.7
17	Clothianidin	3.23	25	250.1 < 132.1	29	250.1 < 168.6	15	168.6
18	Coumaphos O	5.91	45	347 < 211	34	347 < 291	22	291
19	Coumaphos S	6.95	40	363 < 227	24	363 < 307	16	227
20	Desethylatrazine	3.89	35	187.9 < 104	28	187.9 < 146	20	146
21	Diazinon	6.97	36	305.1 < 153.1	22	305.1 < 169.1	18	169.1
22	Dichlorvos	4.7	32	220.7 < 108.8	19	220.7 < 144.8	11	108.8
23	Difenoconazole	7.16	42	406 < 250.8	25	406 < 336.8	17	250.8
24	Diflubenzuron	6.65	23	311 < 141.1	32	311 < 158.2	15	158.2
25	Dimethoate	3.5	17	230 < 125	20	230 < 199	10	199
26	Diuron	5.6	25	233 < 72.1	15	233 < 160	28	72.1
27	Ethion	7.6	22	384.7 < 142.8	25	384.7 < 198.8	11	198.8
28	Ethion monoxon	6.71	27	368.7 < 170.7	17	368.7 < 198.8	11	198.8
29	Ethofumesate	6.01	13	304.1 < 121.1	20	304.1 < 161.2	25	121.1
ISTD	Ethoprofos	6.57	23	243.1 < 173	22			173
30	Fenoxaprop ethyl	7.43	12	361.9 < 243.7	25	361.9 < 287.7	19	287.7

Cmpd #	Pesticide	RT (min)	Cone (V)	First transition (m/z)	Coll En (V)	Second transition (m/z)	Coll En (V)	Quant Ion
63	Simazine	4.85	35	202 < 124.1	20	202 < 132	20	132
64	Sulprofos	7.72	27	322.9 < 218.7	17	322.9 < 246.8	13	218.7
65	Tebufenozide	6.73	12	353.1 < 105	50	353.1 < 133.1	22	133.1
66	Tetrachlorvinphos	6.77	27	366.5 < 126.7	17	366.5 < 240.6	17	126.7
67	Tetraconazole	6.5	37	371.9 < 69.8	23	371.9 < 158.7	33	158.7
68	Thiabendazole	3.25	45	202.1 < 131	33	202.1 < 175	24	175
69	Thiamethoxam	2.63	23	292 < 181	18	292 < 211	13	211
70	Thiobencarb	7.1	25	257.9 < 100.1	10	257.9 < 125.1	20	125.1
71	Trifloxystrobin	7.24	25	409 < 145	44	409 < 186	20	186

GC/MS/MS Instrumental Settings

GC Chromatographic Parameters

1) Carrier Gas: Helium

2) Column 1 Flow Rate: 1.4 mL/min

3) Column 2 Flow Rate: 1.2 mL/min

4) Injector temperature: 280 °C

5) Injection volume: 1 μL for muscle samples, 2 μL for egg

6) Injection Mode: splitless

7) Temperature program

a) Initial temp: 60 °C

b) Initial hold time: 1 min

c) Program rate up to 120 °C: 40 °C/min

d) Program rate up to 292: 5 °C/min

e) Post-run time: 2 min

f) Total Run time: 36.9 min

Instrumental Note:

GC chromatographic parameters are optimized and adjusted as needed during annual preventative maintenance and calibration.

Figure 17: Example of a GC-MS/MS instrument. Photo courtesy of Ryan Matsuda USDA-FSIS

GC Mass Spectrometry Parameters

1) Ionization: Positive Electron Impact

2) Detector EMV: 1352 V

3) Collision Gas: Nitrogen @ 1.5 mL/Min

4) Collision Energy: Optimized for each compound.

5) MS Source temperature: 300 °C

6) Transfer line temperature: 300 °C

7) Solvent delay: 7.0 min

8) Autotune the instrument as needed.

9) MRM Transitions

Instrumental Note:

GC mass spectrometer parameters are optimized and adjusted as needed during annual preventative maintenance and calibration.

Table 15 – GC MRM Transitions

	- GC MIKM Transit								
Cmpd #	Pesticide	RT (min)	First transition (m/z)	Coll En (V)	Second transition (m/z)	Coll En (V)	Third transition (m/z)	Coll En (V)	Quant Ion
1	1-Naphthol	9.479	144 > 115	25	115 > 89	20			115
2	Aldrin	19.54	263 > 193	55	263 > 228	35	263 > 191	55	193
3	Bifenthrin	31.76	181 > 165	10	181 > 166	20	165 > 115	40	165
4	Chlordane cis	23.77	373 > 266	25	373 > 337	20	373 > 264	25	266
5	Chlordane trans	23.08	373 > 266	15	373 > 337	10	373 > 264	20	265.9
6	Chloroneb	9.101	191 > 113	15	191 > 141	10			113
7	Chlorothalonil	15.34	266 > 133	30	266 > 168	60	266 > 231	20	132.9
8	Chlorpropham	11.88	213 > 127	20	213 > 171	5			127
9	Chlorpyrifos	19.57	316 > 260	15	314 > 166	40	314 > 286	5	260
10	Chlorpyrifos methyl	17.16	286 > 93	35	286 > 271	35	286 > 208	25	93
11	DDD o,p'	25.57	237 > 165	20	235 > 199	10	199 > 164	20	165
12	DDD p,p' + DDT o,p'	27.66	235 > 165	20	199 > 164	20	235 > 199	15	165
13	DDE o,p'	23.32	246 > 176	30	318 > 248	15	318 > 246	15	176
14	DDE p,p'	25.12	246 > 176	30	318 > 248	15	318 > 246	15	176
15	DDT p,p'	29.71	235 > 165	20	235 > 199	15	199 > 164	15	165

Cmpd #	Pesticide	RT (min)	First transition (m/z)	Coll En	Second transition (m/z)	Coll En	Third transition (m/z)	Coll En	Quant Ion
				(V)		(V)		(V)	
16	Dieldrin	25.32	277 > 241	5	263 > 193	60	272 > 237	10	241
17	Endosulfan I	23.75	241 > 206	20	339 > 160	20			205.9
18	Endosulfan II	27.32	241 > 206	20	339 > 160	20			206
19	Endosulfan sulfate	29.58	272 > 237	15	272 > 235	30	272 > 143	30	237
20	Fenpropathrin	32.1	181 > 152	25	265 > 210	10			152
21	Fipronil	22.12	367 > 213	60	367 > 255	35			213
22	Fipronil desulfinyl	17.74	388 > 333	20	333 > 231	60			333
23	Fipronil sulfide	21.59	351 > 255	20	420 > 351	10			255
24	Heptachlor	17.7	272 > 237	15	337 > 266	15			237
25	Heptachlor epoxide (cis&trans) or (B+A)	22.04	183 > 119	25	272 > 237	20	353 > 282	25	119
26	Hexachlorobenzene (HCB)	12.92	284 > 249	15	282>247	60	250 > 142	45	249
27	Lindane (BHC gamma)	14.36	181 > 145	15	219 > 183	5	219 > 109	35	145
28	MGK – 264 1	20.8	164 > 98	10	164 > 67	5	164 > 80	35	98
	MGK – 264 2	21.54	164 > 67	15	164 > 98	10	164 > 80	35	67
29	Metolachlor	19.46	238 > 162	10	162 > 133	15			162
30	Nonachlor cis	27.46	409 > 109	15	409 > 302	20			108.9
31	Nonachlor trans	23.9	409 > 302	25	409 > 109	40	409 > 263	40	302
32	Oxychlordane	21.69	187 > 123	10	187 > 85	30			123
33	Pentachloroaniline (PCA)	16.54	265 > 192	25	265 > 228	35			192
34	Pentachlorobenzene (PCB)	9.348	250 > 142	35	250 > 179	30			142
35	Permethrin (cis&trans)	34.21	183 > 153	15	183 > 165	10	183 > 127	45	153
36	Pronamide	14.71	173 > 145	15	173 > 109	55			145
37	Tefluthrin	15.35	177 > 127	15	177 > 137	20	177 > 87	60	127
ISTD	Trichloronate	20.38	297 > 269	10	299 > 271	10			269

Instrumental Note:

Retention time windows, collision energies, and selected masses for precursor and product ions were set and utilized at time of method validation.

- Retention time windows may be adjusted to account for aging of UHPLC or GC columns or for improved separation to ensure that all chromatographic peaks are present.
- Collision energies may be adjusted and optimized for improved mass spectrometry detection
- Target masses for precursor and product ions can be optimized to a *m/z* value that falls within the unit mass resolution of the exact mass, but not to exceed the next integer value (e.g., if the exact mass is 787.5, an allowable target mass range includes 787.0-787.9).

Sample Set

The injection sequence below can be modified, as needed, but must include required controls. System Suitability is to be demonstrated prior to sample set injection.

- 1) Injection Standard
- 2) Decision Level
- 3) Positive Control (Recovery)
- 4) Solvent Blank
- 5) Negative Control (Blank)
- 6) Intra-Laboratory Check Sample (if applicable)
- 7) Samples, up to a maximum of 18
- 8) Re-injection of the positive control (recovery) (for system suitability)

INTRA-LABORATORY CHECK SAMPLE

Defined on the CLG website here.

Reporting of Results

Decision Criteria

Screening

- 1) The quantitative ion and all other ions listed for the analyte in Table 14 and 15 must be present.
- 2) All ions must have a signal-to-noise ratio ≥ 3 . This may be verified by visual inspection.
- 3) The internal standard response for the sample must be > 50% of the internal standard response of the recovery (positive control). If the internal standard response of the sample exceeds 200% of the internal standard response of the recovery (positive control), that sample will be investigated.
- 4) Retention time for the recovery and samples must match the retention time of the decision level recovery within $\pm 5\%$ for LC, $\pm 0.5\%$ for 1-naphthol and chloroneb, $\pm 1\%$ for all other single peak GC compounds, and $\pm 5\%$ for multipeak compounds for GC.
- 5) All quantitative ion peak areas in the blank must be < 10% of the decision level recovery.

- 6) The sample is screen positive if the following criteria are met:
 - a) The fortified recovery of the analyte must exceed 10% of the decision level recovery.
 - b) The sample response equals or exceeds the recovery level.

QUALITY CONTROL

Quality Control Procedures

- 1) For set acceptance, 95% (for LC and for GC) of the monitored analytes in the recovery (positive control) must meet screening criteria. For sample reporting purposes, screen positive analytes must meet screening criteria in the recovery (positive control), or else further testing is warranted.
- 2) For set acceptance, 95% (for LC and for GC) of the monitored analytes in the blank (negative control) must not meet the screening criteria. The blank (negative control) must be negative using the criteria in screening criteria.for samples containing corresponding presumptive positive analytes.
- 3) The internal standard response for the recovery (positive control) and blank (negative control) must be 50-150% of the internal standard response of the decision level.

Intra-laboratory Check Samples (If applicable)

- 1) Acceptability criteria.
 - a. 95% of the monitored analytes in a fortified Intra-Laboratory Check must meet screening criteria.
 - b. 95% of the monitored analytes in an unfortified Intra-Laboratory Check must be negative using the screening criteria.
 - c. FSIS Field Service Laboratories are to refer to internal FSIS Quality Control Procedures when unacceptable values are obtained:
 - i. Refer to LW-Q1002, Chemistry Non-Conformance Tables, for how to proceed and whether to take corrections or corrective actions.

Calculations

1) Relative Response Factor (RRF)

This is the internal standard corrected analyte response.

A = B / C

where

A = Relative Response Factor (unitless)

B = Quant Ion Peak Area of Analyte (counts)

C = Quant Ion Peak Area of Internal Standard (counts)

2) Estimated Amount Found

This is a quantitative estimate calculated for comparison to the MLA. It is based on a one-point calibration with the recovery (positive control) as the reference. Program the MS instruments to automatically calculate this.

D = E * A sample / A pos. ctrl.

where

D = Estimated Amount Found in the Sample (ppb)

E = Recovery (positive control) Fortification Level (ppb)

A sample = Relative Response Factor in the Sample (unitless)

A pos. ctrl. = Relative Response Factor in the recovery (positive control) (unitless)

Minimum Level of Applicability

Table 16 - Minimum Level of Applicability for Screening Level per species

#	Pesticides	Porcine (ppb)	Bovine (ppb)	Poultry (ppb)	Ovine (ppb)	Caprine (ppb)	Equine (ppb)	Catfish (ppb)	Liquid Eggs	Powder Eggs
									(ppb)	(ppb)
					ompounds					
				Carl	oamates					
1	3-Hydroxycarbofuran	5	5	5	5	5	5	5	5	10
2	Aldicarb	10	10	10	10	10	10	10	N/App	N/App
3	Aldicarb sulfone	10	10	10	10	10	10	10	10	20
4	Aldicarb sulfoxide	25	25	25	25	25	25	25	25	50
5	Carbaryl	25	25	25	25	25	25	25	25	50
6	Carbofuran	5	5	5	5	5	5	5	5	10
7	Methomyl	30	30	30	30	30	30	30	30	60
8	Thiobencarb	50	50	50	50	50	50	50	50	100
				Conazo	le / Triazol	e				
9	Difenoconazole	15	15	15	15	15	15	15	15	30
10	Myclobutanil	10	10	10	10	10	10	10	10	20
11	Propiconazole	15	15	15	15	15	15	15	15	30
12	Tetraconazole	5	5	5	5	5	5	5	5	10
				Halogena	ted Pesticio	les				
13	Alachlor	5	5	5	5	5	5	5	5	10
14	Boscalid	15	15	15	15	15	15	15	15	30
15	Carfentrazone ethyl	5	5	5	5	5	5	5	5	10
16	Diflubenzuron	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	25
17	Linuron	25	25	25	25	25	25	25	25	50
18	Norflurazon	10	10	10	10	10	10	10	10	20
19	Propachlor	10	10	10	10	10	10	10	10	20
20	Propanil	25	25	25	25	25	25	25	25	50
				Neon	icotinoids	1	<u>I</u>	<u>I</u>	<u>I</u>	
21	Acetamiprid	5	5	5	5	5	5	5	5	10

#	Pesticides	Porcine (ppb)	Bovine (ppb)	Poultry (ppb)	Ovine (ppb)	Caprine (ppb)	Equine (ppb)	Catfish (ppb)	Liquid Eggs (ppb)	Powder Eggs (ppb)
22	Clothianidin	10	10	10	10	10	10	10	10	20
23	Imidacloprid	25	25	25	25	25	25	25	25	50
24	Thiamethoxam	10	10	10	10	10	10	10	10	20
				Organo	phosphates	3	•		•	
25	Acephate	10	10	10	10	10	10	10	N/App	N/App
26	Azinphos methyl	10	10	10	10	10	10	10	10	20
27	Coumaphos O	10	10	10	10	10	10	10	10	20
28	Coumaphos S	10	10	10	10	10	10	10	10	20
29	Diazinon	5	5	5	5	5	5	5	5	10
30	Dichlorvos (DDVP)	10	10	10	10	10	10	10	10	20
31	Dimethoate	10	10	10	10	10	10	10	10	20
32	Ethion	10	10	10	10	10	10	10	10	20
33	Ethion monoxon	10	10	10	10	10	10	10	10	20
34	Malathion	40	40	40	40	40	40	40	40	80
35	Methamidophos	10	10	10	10	10	10	10	N/App	N/App
36	Omethoate	10	10	10	10	10	10	10	N/App	N/App
37	Pirimiphos methyl	10	10	10	10	10	10	10	10	20
38	Profenofos	10	10	10	10	10	10	10	10	20
39	Propetamphos	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	15
40	Sulprofos	25	25	25	25	25	25	25	25	50
41	Tetrachlorvinphos	10	10	10	10	10	10	10	10	20
				Genera	l Pesticides					
42	Azoxystrobin	5	5	5	5	5	5	5	5	10
43	Benoxacor	5	5	5	5	5	5	5	5	10
44	Buprofezin	25	25	25	25	25	25	25	25	50
45	Diuron	80	80	80	80	80	80	80	80	160
46	Ethofumesate	20	20	20	20	20	20	20	20	40
47	Fenoxaprop ethyl	10	10	10	10	10	10	10	10	20
48	Fluridone	25	25	25	25	25	25	25	25	50
49	Fluroxypyr-1- Methylheptyl-Ester	5	5	5	5	5	5	5	5	10
50	Hexazinone	30	30	30	30	30	30	30	30	60
51	Hexythiazox	10	10	10	10	10	10	10	10	20
52	Imazalil	5	5	5	5	5	5	5	N/App	N/App
53	Indoxacarb	25	25	25	25	25	25	25	25	50

#	Pesticides	Porcine (ppb)	Bovine (ppb)	Poultry (ppb)	Ovine (ppb)	Caprine (ppb)	Equine (ppb)	Catfish (ppb)	Liquid Eggs (ppb)	Powder Eggs (ppb)
54	Metalaxyl	10	10	10	10	10	10	10	10	20
55	Methoxyfenozide	5	5	5	5	5	5	5	5	10
56	Metribuzin	50	50	50	50	50	50	50	50	100
57	Piperonyl butoxide	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	45
58	Pyraclostrobin	50	50	50	50	50	50	50	50	100
59	Pyridaben	9	9	9	9	9	9	9	9	18
60	Pyriproxyfen	20	20	20	20	20	20	20	20	40
61	Tebufenozide	40	40	40	40	40	40	40	40	80
62	Thiabendazole	15	15	15	15	15	15	15	15	30
63	Trifloxystrobin	5	5	5	5	5	5	5	5	10
				Pyr	ethroids	<u>I</u>				
64	Fluvalinate	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	15
65	Prallethrin	40	40	40	40	40	40	40	40	80
66	Pyrethrin I	28	28	28	28	28	28	28	28	56
67	Pyrethrin II	31	31	31	31	31	31	31	31	62
68	Resmethrin (cis&trans)	50	50	50	50	50	50	50	50	100
				Tı	riazine				l	
69	Atrazine	10	10	10	10	10	10	10	N/App	N/App
70	Desethylatrazine	10	10	10	10	10	10	10	10	20
71	Simazine	10	10	10	10	10	10	10	10	20
				GC C	ompounds					
				Car	rbamate					
1	Chlorpropham	30	30	30	30	30	30	30	30	60
				Halo	ogenated					
2	Pronamide	5	5	5	5	5	5	5	5	10
				Organ	nochlorine	1	•	•	•	
3	Aldrin	25	25	25	25	25	25	25	25	50
4	Chlordane cis	10	10	10	10	10	10	10	10	20
5	Chlordane trans	10	10	10	10	10	10	10	10	20
6	DDD o,p'	50	50	50	50	50	50	50	50	100
7	DDD p,p' + DDT, o,p'	50 +50	50+50	50+50	50+50	50+50	50+50	50+50	50+50	100 + 100
8	DDE o,p'	50	50	50	50	50	50	50	50	100
9	DDE p,p'	50	50	50	50	50	50	50	50	100

#	Pesticides	Porcine (ppb)	Bovine (ppb)	Poultry (ppb)	Ovine (ppb)	Caprine (ppb)	Equine (ppb)	Catfish (ppb)	Liquid Eggs (ppb)	Powder Eggs (ppb)
10	DDT p,p'	50	50	50	50	50	50	50	50	100
11	Dieldrin	25	25	25	25	25	25	25	25	50
12	Endosulfan I	50	50	50	50	50	50	50	50	100
13	Endosulfan II	50	50	50	50	50	50	50	50	100
14	Endosulfan sulfate	50	50	50	50	50	50	50	50	100
15	Heptachlor	25	25	25	25	25	25	25	25	50
16	Heptachlor epoxide (cis+ trans) or (B+A)	25+25	25+25	25+25	25+25	25+25	25+25	25+25	25+25	50+50
17	Hexachlorobenzene (HCB)	25	25	25	25	25	25	25	N/App	N/App
18	Lindane (BHC gamma)	40	40	40	40	40	40	40	40	80
19	Nonachlor cis	15	15	15	15	15	15	15	15	30
20	Nonachlor trans	15	15	15	15	15	15	15	15	30
21	Oxychlordane	10	10	10	10	10	10	10	10	20
22	Pentachlorobenzene (PCB)	10	10	10	10	10	10	10	10	20
				Organo	ophosphate		•	•		
23	Chlorpyrifos	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	15
24	Chlorpyrifos methyl	5	5	5	5	5	5	5	5	10
				Genera	l Pesticides	3	•	•		
25	1-Naphthol	30	30	30	30	30	30	30	N/App	N/App
26	Fipronil	5	5	5	5	5	5	5	5	10
27	Fipronil desulfinyl	5	5	5	5	5	5	5	5	10
28	Fipronil sulfide	5	5	5	5	5	5	5	5	10
29	Metolachlor	10	10	10	10	10	10	10	10	20
30	MGK-264 (isomers 1 & 2)	50	50	50	50	50	50	50	50	100
				Pyr	ethroids	•				
31	Bifenthrin	5	5	5	N/App	5	5	N/App	5	10
32	Fenpropathrin	25	25	25	25	25	25	25	25	50
33	Permethrin (cis&trans)	25	25	25	25	25	25	N/App	N/App	N/App
34	Tefluthrin	5	5	5	5	5	5	5	5	10
				Substitut	ted Benzen	es				
35	Chloroneb	9	9	9	9	9	9	9	9	18
36	Chlorothalonil	60	60	60	60	60	60	60	N/App	120

#	Pesticides	Porcine (ppb)	Bovine (ppb)	Poultry (ppb)	Ovine (ppb)	Caprine (ppb)	Equine (ppb)	Catfish (ppb)	Liquid Eggs (ppb)	Powder Eggs (ppb)
37	Pentachloroaniline (PCA)	25	25	25	25	25	25	25	25	50

References

The Environmental Protection Agency (EPA) regulates the approval and use of pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act.

21CFR 556 for Tolerance values set by FDA.

Contact Information and Inquiries

Inquiries about methods can be submitted through the USDA website via the "Ask USDA" portal at https://ask.usda.gov or please contact:

> **Chemistry Section** Laboratory Quality Assurance, Response, and **Coordination Staff USDA/FSIS/OPHS** 950 College Station Road Athens, GA 30605 OPHS.LQAD@usda.gov

This method has been validated, reviewed, approved, and deemed suitable and fit for purpose for use in the USDA FSIS Field Service Laboratories.

William K. Shaw, Jr., PhD **Executive Associate for Laboratory Services**

Wilhai KShang.