

Food Safety and Inspection Service U.S. DEPARTMENT OF AGRICULTURE

## Understanding and Evaluating Microbiological Sampling and Testing

Udit Minocha Microbiologist June 2023

## **Today's Presentation**

- Sampling methods
- Assessing sampling plans and testing methods
- Method validations and laboratory quality assurance
- FSIS testing programs, methods and pathogen-specific issues to consider
- Industry testing activities

## **Sampling Methods**

- Destructive sampling grab, cloth, N60 (excision)
   e.g., RTE, ground comminuted products, egg products, carcass excision
- Non-Destructive sampling
  - Typically chosen when destructive sampling not an option
  - Examples:
    - o Cloth
    - Carcass rinsates or sponge
    - Parts rinsate
    - $\circ \quad \text{Environmental sponge}$

#### **Cloth Method**

- Products in combo bins / boxes / totes
  - o Randomly select one combo bin from the specific production available for sampling
  - Use one cloth to sample the surface of the combo bins / boxes / totes
- Products in boxes, totes, tubs, or containers other than combo bins
  - 1 cloth for up to 5 containers from the same lot of product
  - Flip the cloth when you are half way around a combo bin or swabbed half of the number of boxes / totes
  - 45 to 60 seconds total sampling time per lot will usually be between 1:30 to 2 minutes

4

## What is N60?

- N60 = number of samples (n) = 60
  - Multiple representative samples provides best option for detecting scattered contamination
  - $\circ~$  Provides 95% confidence that no more than 5% of food pieces the size of each "n" in the entire lot are contaminated
- Keys to success
  - Must ensure that sampling is as representative as possible across the lot
  - Large composite "N60" samples typical need a larger test portion

#### **Common Sampling Problems**

- Small sample or sampling method may not be ideal for detection • *e.q.*, small swab device or environmental area sampled
- Sanitizer or residual antimicrobial chemicals might interfere with the test
  - Insufficient drip time prior to carcass sample collection
  - Excessive liquid carryover for parts sample collection
- Temperature abuse for the sample prior to testing
  - o Ĥolding under refrigeration for long periods allows competing bacteria to grow
  - Freezing can kill some pathogens (e.g., Campylobacter)

6

## **Assessing Sampling Plans**

#### 7

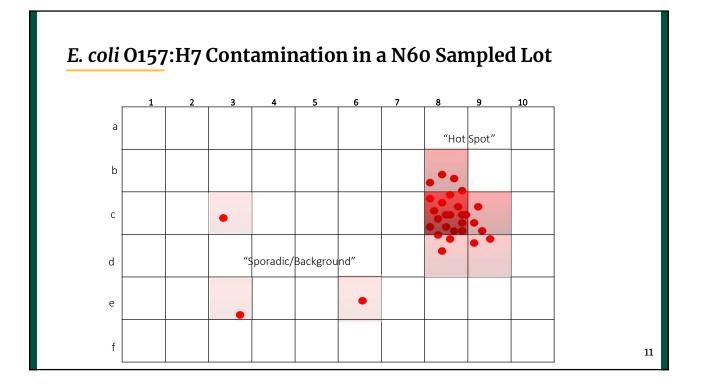
## **Sampling Methods**

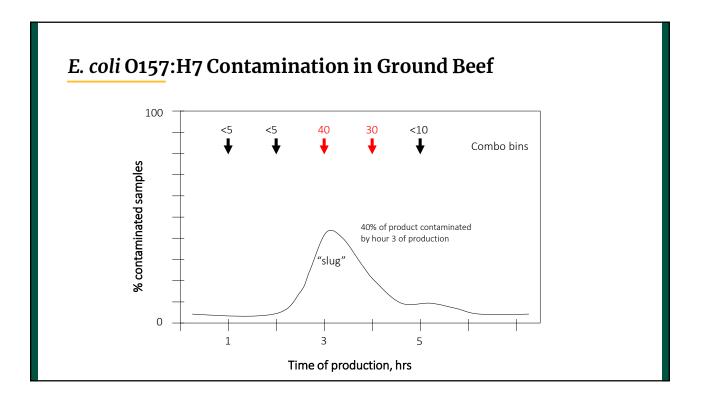
- All sampling plans have significant limitations

   Relative rigor of the sampling program must be evaluated
- Best sampling plans provide the opportunity but no guarantee of detection  $_{\odot}~$  i.e., scattered contamination is difficult to detect
- Frequent sampling and sampling multiple sites/time points provides a better opportunity for detection Examples:
  - Multiple samples per day vs. once per month
  - N60 per lot vs. one grab sample per lot
- Does the type of sampling meet the intended need?
   Destructive vs. non-destructive sampling

## **Sampling Plans**

Statistical sampling plans assume:


- Uniform manufacturing conditions
- Equal probability of contamination throughout the lot (homogeneous distribution)
- Independent, random sampling (equal probability of sampling throughout the lot)


## Why are Pathogens Hard to Detect?

- They are typically not evenly distributed •
- They occur at low levels •
- They are often injured when found in the product •
- •
- Detection may be inhibited by material in the food product (food matrix)
   Example: high amounts of fat may inhibit PCR assays; spices, salt, acidulants can affect isolation and detection

10

a





# Assessing Testing Methods

#### 13

## **Key Players for Ensuring Robust Testing Methods**

- The establishment that needs the testing
- The laboratory they hire
- The manufacturer of the screening test they use
- The organization validating the screening test

## **Steps in Detection Methods**

- Sample collection
- Sample preparation
- Enrichment for the pathogen
- Screening of the pathogen
- Confirmation of the pathogen

## **Considerations for Testing Methods**

- Is the method fit for the intended purpose of the analysis?
- Has the method been optimized and experimentally validated for sensitive detection of pathogens?
- Is the laboratory complying to the validated method protocol?

16

## **Assessing Fitness for Purpose**

- Is the test portion appropriate to meet the need? •
- Is the method enrichment-based with the intent to detect the • lowest possible numbers of stressed pathogen cells?
- Has the food matrix been validated for the method used? •
- Are confirmation procedures appropriate for determining true • negative samples?

## The "Test Portion"

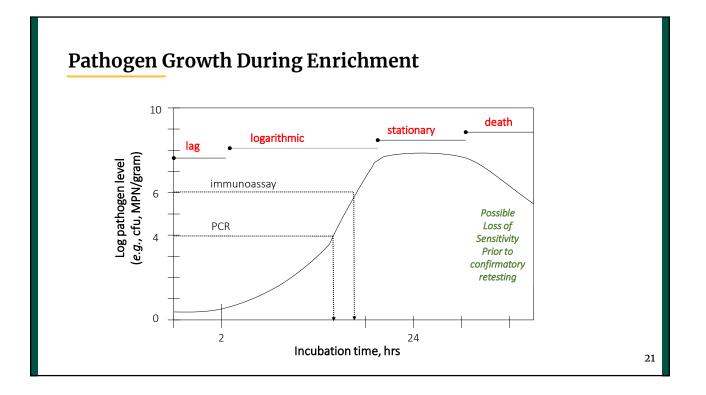
- Laboratory sample preparation => "test portion" o "analytical unit" or "analytical portion" o Definition: the part of the "sample" that is actually tested by the laboratory
- The test portion determines the theoretical (*i.e.*, best possible) • sensitivity of the test
  - *e.q.*, 1 cell/test portion
  - 25-gram test portion: detecting 0.04 cells/gram is possible
  - 325-gram test portion: detecting 0.003 cells/gram is possible

18

## Enrichment

- Test portion is incubated 8-48 hours in a culture broth
   Why?
  - Contamination levels are too low for detection without enrichment
  - Must grow to high levels so very small volumes have enough pathogen present for later detection steps
- Different pathogens require different enrichment media (broth)

   One vs. two-stage enrichment
- Primary enrichment vs. secondary enrichment


   Resuscitation vs. selective growth

## **Considerations for Proper Enrichment**

- Resuscitation (lag phase) can require 2-3 hours before log-phase growth begins

   Some samples support slower growth
- Has enrichment broth been tempered to warm temperature prior to incubation?
   Particularly critical for large test portions or shorter incubation periods

20



## **Enrichment Period**

- Different screening tests require different levels of enriched pathogen
- Shorter incubation periods (<15 hours) may warrant additional scrutiny of laboratory compliance to the validated protocol
- Has enrichment/screening combination been validated for a larger test portion?
   Particular concern for large test portions incubated for shorter periods *e.g.*, 375gram test portion incubated for 8 hours
- Proposed incubations <8 hours may warrant OPHS review

## **Confirmatory Testing**

- Non-culture confirmation (e.g., PCR) •
- Culture confirmation (e.g., FSIS confirmation)
  - Plating the enrichment on selective and differential agar 0 media
  - o Immunomagnetic separation (IMS) necessary prior to plating for E. coli O157:H7 and non-O157 STECs
    - Suspect colonies = "presumptive positive"
- Purification and confirmatory identification tests including: ٠

  - Biochemical (e.g., identifies "E. coli")
    Serological (e.g., identifies "O157" and "H7")
    Genetic (e.g., identifies "stx" = Shiga toxin genes)

#### **Concerns for Confirmation**

- Do not re-sample the lot or sample reserve! •
- Non-culture confirmation
  - Same considerations as the screening test
  - o Used under validated conditions
  - Transport and storage of enrichment
- Culture confirmation- carefully assess! •
  - Typically expect that methods comply with a validated procedure (e.g., MLG, FDA-BAM, ISO)
  - Small changes can affect ability to recover pathogen of interest

24

## **Quantitative Testing**

Two options:

- MPN
- Direct plating

**NOTE:** Quantitative testing typically cannot accommodate larger test portions and provide the opportunity for detection that a qualitative test can provide

# Most Probable Number (MPN) Enumeration Analysis

- Traditional enrichment-based analyses are performed on three or more dilutions, each typically in triplicate, from a single sample homogenate (*i.e.*, MPN = method format, not a specific method per se)
- Advantages:

   Better sensitivity (lower LOD) than direct plating
- Disadvantages:
  - Very resource intensive/expensive
- Application:
  - For quantifying low levels of pathogens (*e.g.*, *Salmonella*, *E. coli* 0157:H7, *L. monocytogenes*)

26

## **Direct Plating Enumeration Methods**

- Product is homogenized in diluent and small volume is directly dispensed onto agar media (*i.e.*, sometimes there is a 1-2 h "resuscitation" step, but enrichment is never used prior to plating)
- Advantages:
  - Allows easy inexpensive quantitative analysis
- Disadvantages:
  - Accommodates only a very small test portion
  - Higher LOD (*i.e.*, often 100 CFU/g) not suitable for detecting low levels of pathogens
- Application:
  - Expedient for higher level analytes (*e.g.*, indicators, *Campylobacter*, *S. aureus*, *C. perfringens*, *B. cereus*)

#### **Method Validations**

## Value of Validation

- Determines performance characteristics of the method in comparison to a gold standard (reference) method (*e.g.*, usually FSIS or FDA method)
- · Independent evaluation provides credibility
- Rigor varies (multilab vs. single lab, # tests, etc)
- Still must consider fitness for purpose and how the method is applied
  - *e.g.*, some AOAC-validated methods are not consistent with FSIS goals or Compliance Guidelines

#### **Method Validation**

- Recognized independent method validation organizations:
  - Government: FSIS (MLG) and FDA (BAM)
  - AOAC International (U.S.A.)
    - AOAC Official Methods of Analysis (OMA) validations
    - AOAC-RI "Performance Tested Method" validations
  - AFNOR (France)
    - e.g., bioMerieux Vitek biochemical confirmation tests
  - Others (ISO, MicroVal, NordVal, AENOR, etc.)
- However, past validations conducted by these organizations may not be relevant to larger test portions or other testing scenarios

#### Foodborne Pathogen Test Kits Validated by Independent Organizations

- FSIS maintains a list, updated quarterly, of methods that have been validated by independent organizations
  - <u>https://www.fsis.usda.gov/sites/default/files/media\_file/202</u> <u>1-05/Validated-Test-Kit.pdf</u>
- None of the test kits listed are implicitly approved by USDA FSIS
  - A validated test kit must also be fit for purpose and appropriate for the specific application in a food safety program

## Process for Validating Qualitative Pathogen Methods

- · Series of laboratory experiments using inoculated samples under controlled conditions
- Inoculate portions with pathogen strain at very low level where only 20-80% of samples are positive (*i.e.*, fractional recovery)
- Statistically compare percent of positive samples in alternative method to reference method (FSIS MLG)

32

## **Considerations for Validation Data**

- Was method compared to an appropriate reference method (*e.g.*, FSIS MLG; FDA)?
- If not performed by AOAC, AFNOR, etc., is supplemental validation data available?
  - $\circ \ \ \, \text{May require additional scrutiny}$

#### **Testing Method Specifications**

- <u>Sensitivity</u>: probability that truly positive samples are detected as positive by analytical test
  - 100 false negative rate
- <u>Specificity</u>: probability that truly negative samples detected as negative by analytical test

   100 – false positive rate
- <u>Level of detection (LOD)</u>: lowest level of contamination reliably detected by analytical test
  - LOD expressed as ratio of organisms to quantity tested material (*e.g.*, CFU per gram, MPN per mL, CFU per square-ft) but definitions vary (e.g., LOD95, POD)

34

## **Factors Impacting Detection and Method Specifications**

- Detection as measured by sensitivity, specificity, and LOD can vary based on:
  - Specific strains of pathogen
  - Intrinsic factors for the sample matrix
    - Levels of competing bacteria
    - Fat, salt, pH and additives
- Experimental design for the validation study (e.g., cell stress, etc.)

#### Complying with the Validated Protocol

- Do AOAC/AFNOR/ISO citations match the protocol in use?
  - Modifications are common, and some contribute to greater potential for false negative result
- Compare the lab procedure to the validated protocol (*i.e.*, package insert)
- If culture confirmation is used, verify that it follows validated method as well

36

## Methods not Validated by Recognized Organizations

- "Supplemental" or "extension" validations
- *E. coli* O157:H7 and non-O157 STEC testing for 325-375g test portions
  - Modifications required for AOAC validated procedures based on 25g
  - Instructions for sample preparation may not be clear for the lab

#### Laboratory Accreditation and Quality Assurance

- ISO 17025 = protocol for establishing and documenting a microbiology laboratory quality program (*i.e.*, "HACCP" for labs)
- Accrediting bodies = A2LA and others
- Accreditation implies robust quality program but does not necessarily indicate methods meet FSIS expectations
  - Laboratories are able to perform the methods they use as expected, but methods are not "accredited" to be fit for purpose
- Laboratories are not required to be ISO accredited, but should have quality assurance programs that ensure results are reliable and accurate

38

## **FSIS Testing Programs**

## FSIS Microbiological Sampling Program Objectives

- Assess effectiveness of industry process controls
- Provide critical feedback to industry
- Monitor compliance with performance standards, zero-tolerance policies
- Allow FSIS to monitor industry-wide trends
- Serve as a strong incentive to reduce the occurrence of pathogens in products
- Capture pathogen characterization information (*i.e.*, serotype, speciation, antimicrobial resistance, whole genome sequencing)

## **FSIS Sampling Programs**

- Sampling plans measure compliance with performance standards:
   Salmonella and Campylobacter verification programs (raw poultry)
- Zero-tolerance policies for food pathogens
  - *E. coli* O157:H7 and non-O157 Shiga toxin-producing *E. coli* (non-O157 STEC) (raw non-intact beef or components of raw ground beef)
  - *Listeria monocytogenes* in RTE and pasteurized egg products and on food contact surfaces
  - Salmonella in RTE and pasteurized egg products

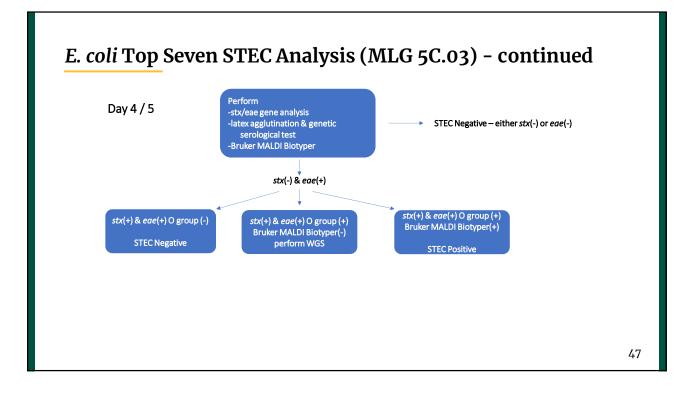
## FSIS Methods and Pathogen-specific Issues to Consider

## Shiga Toxin-Producing E. coli (STEC) Testing

Includes:

*E. coli* O157:H7 and the six non-O157 Shiga toxin-producing *E. coli* (STEC) (non-O157 STEC) - O26, O45, O103, O111, O121, and O145

#### **O157 STEC Program**


- Strain must have:
  - o **0157(+)**
  - $\circ$  stx(+) OR stx(-) and H7(+)
  - biochemical(+) or Bruker MALDI Biotyper
- Currently FSIS only analyzes beef manufacturing trimmings (MT60) for non-O157 STECs
- FSIS plans to expand non-O157 STEC verification testing (85 FR 34397; June 2020):
  - Ground beef (MT43), bench trim (MT65), raw ground beef components other than trim (MT64)
  - Responding to comments; final rule; grace period, etc.

45

## Non-O157 STEC Program

- Six non-O157 STEC = O26, O45, O103, O111, O121, O145 Strain must have: •
  - - stx(+) and eae(+) genes
      one of the six O-groups
      biochemical(+) or Bruker MALDI Biotyper
  - Currently FSIS only analyzes beef manufacturing trimmings (MT60) for non-O157 STECs
     Phased rollout MT65 MT64 MT43

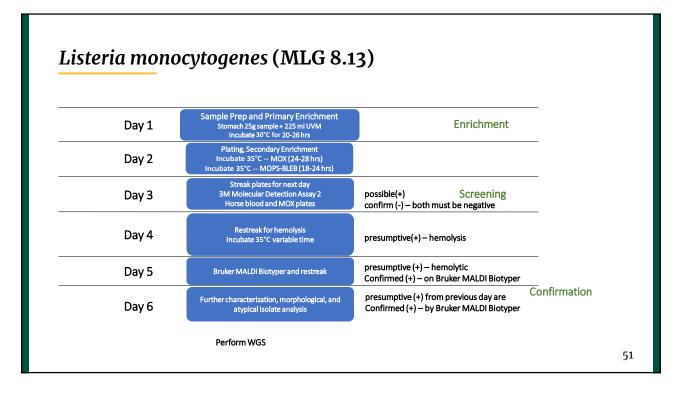
| Day 1     | Sample Prep and Primary Enrichment<br>42°C±1 for 15-24 hours                                                       | Enrichment                                                                                                               |
|-----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Day 2     | Perform PCR<br>All samples that do not test PCR<br>negative are carried forward for<br>further analysis            | Screening                                                                                                                |
|           | Immunomagnetic Bead Capture &<br>Rainbow Agar Plating                                                              | potential (+) – stx(+) eae(+) O group(+)                                                                                 |
| Day 3     | Latex Agglutination & Sheep Blood<br>Agar Plating                                                                  | Negative – no growth, agglutination (-)<br>or agglutination(-)/rapid screen(-)<br>presumptive (+) – agglutination(+) and |
| Day 4 / 5 | Perform<br>-stx/eae gene analysis<br>-latex agglutination & genetic<br>serological test<br>- Bruker MALDI Biotyper | rapid screen (+) or inconclusive                                                                                         |



## Larger E. coli O157:H7 and Non-O157 Test Portions

- Larger test portions (325-375 grams) are important for composite (grab) samples when multiple samples are collected throughout the production day
- Methods must be adapted, optimized and validated for effective use with 325-375 gram test portions

## E. coli O157:H7 and Non-O157 STEC Testing Concerns


- Supplemental validation and special instructions for testing larger test portions ٠

  - For enrichment periods <15 hours</li>
     325-375g test portions typically often require longer minimum enrichment period than 25g
- Culture-based detection and confirmation requires immunomagnetic separation (IMS) ٠

## Listeria testing

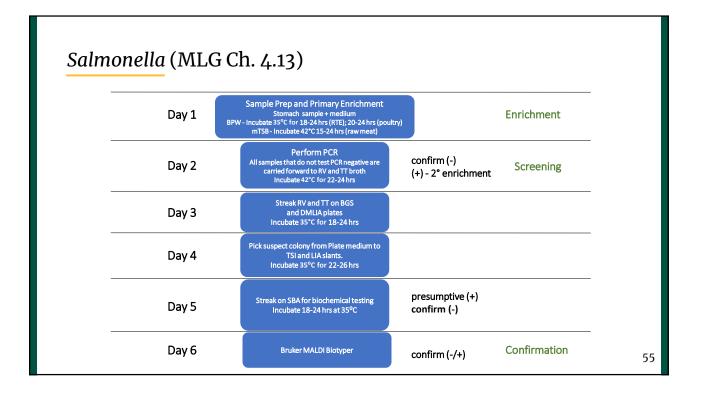
Includes:

L. monocytogenes testing (FSIS) *Listeria*-like or *Listeria* spp. testing (industry)



## Expectations for Listeria Environmental Testing Equivalence

- Compliance Guidelines "Controlling Listeria monocytogenes in Post-Lethality Exposed Ready-To-Eat Meat and Poultry Products" (FSIS-GD-2014-0001; Jan 2014)
- For optimal sensitivity of detection, method for food contact surface testing must:
  - Validated by a recognized body (*e.g.*, AOAC, AFNOR)
  - Be enrichment-based
  - Enrich the entire sponge/swab sample
    - *e.g.*, an aliquot from sponge/swab does not provide opportunity to detect bacteria trapped in the sponge


#### Analytes for Industry Food Contact or Environmental Surface Testing

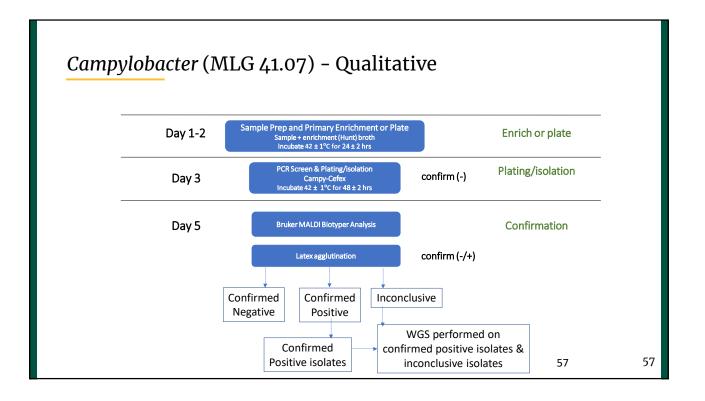
Establishment laboratories test for one of the following:

- Listeria monocytogenes
  - Use internationally recognized **enrichment-based method** that biochemically confirms culture as *L. monocytogenes*
- Listeria spp.
  - Use internationally recognized **enrichment-based method** that uses ELISA, PCR or other screening technology to provide more rapid but less specific *Listeria* spp. result
- "Listeria-like" indicator bacteria
  - Use the first part of an internationally recognized enrichment-based method to find suspect *Listeria* colonies (*e.g.*, darkened colonies on MOX using the FSIS method)

#### Salmonella Testing

- Raw products
  - Meat and turkey carcass sponge samples
  - Chicken carcass/parts rinsates
  - Raw meat and comminuted poultry
- Processed products
  - RTE (325 g portion)
  - Pasteurized egg




## **Campylobacter Testing**

#### Qualitative

Enrichment-based (as opposed to direct plating) since Aug 27, 2018 - exception: "other raw chicken parts" (EXP\_CPT\_OT01 and LO\_CPT\_OT01)

#### Targets

• C. jejuni, C. lari or C. coli



## Issues for Campylobacter Testing

- *Campylobacter* is highly vulnerable to freezing

   Do not freeze samples
- Can be a challenging test (inconsistent results across labs)

## **Industry Testing Programs**

#### 59

## Establishment Documentation for Testing Methods

- •
- Does the establishment have the necessary documentation? Can the establishment provide the method used for microbial detection?
  - Can the establishment provide evidence that the method used was properly validated by an independent body? 0
  - Can the establishment explain why the method fits the need?

#### **Issues for Industry Labs**

- On-site vs. off-site labs

   Shipment of samples/handling during shipment
- Overarching concerns for on-site labs
  - Is testing effective?
  - Is testing safe in that facility?
    - Enrichment of pathogens in an establishments
- Evaluate the following:
  - Are personnel qualified?
  - Does the lab have proper equipment and materials for testing and disposal of contaminated media?
  - Do they follow the validated testing protocol?

#### **Establishment Responsibilities for Laboratory Testing**

- The establishment is ultimately responsible for the testing they request from private laboratories
- Has the establishment properly conveyed testing needs?
  - *e.g.*, test portion equivalent to FSIS as opposed to the default 25 g in protocols
- Is the laboratory aware of FSIS expectations?
   Directives, Notices and guidance
- Establishment should provide documented detailed methodology and validation information for FSIS review

62

# FSIS Verification of Establishment Sampling and Testing Programs

Effectiveness verified by FSIS

- Reviews/observations of EIAOs during FSA
- Establishment provides supporting documentation
- Technical and policy support provided through askFSIS
- Establishment, not laboratory, is responsible for implementing effective program

# FSIS Verification of Establishment Sampling and Testing Programs

Focus of FSIS' evaluation

- Is the method fit for the intended purpose?
- Does the method support the hazard analysis decisions?
- Is the method comparable to the appropriate FSIS method (or is there justification for an alternative)?
- Is a comparable or appropriate test portion used?
- Is the method validated and used under validated conditions?
- Does the laboratory assure the quality of the results?

64



USDA Food Safety and Inspection Service



# fsis.usda.gov