

Module 7. Thermal Processing System Components, Instrumentation, and Equipment, and Process Room Operation

Thermal Processing for Meat and Poultry Products Training

- Mercury-in-glass (MIG) thermometer serves as the reference instrument for LACF
- Alternative devices such as thermocouples or resistance temperature devices (RTD) or digital temperature gauges (DTG) may be used
- Each retort is required to have at least one MIG thermometer, DTG, RTD or equivalent thermometer or electronic device (PLC)

TRAINING

Mercury-In-Glass/Equivalent Thermometer

- Easily readable to 1°F
- MIG range not to exceed
 17°F/inch graduation
- Installed where easily read
- Installation location varies depending on retort type

- Tested for accuracy when installed and annually
- Defective devices must be repaired or replaced

TRAINING

Example of Alternative Device (RTD)

Sensor of RTD installed on Retort and the Display

Temperature Indicating Devices-Acidified Low Acid Canned Foods

- No specific regulation regarding temperature indicating devices
- Calibration is necessary

Checking the Accuracy of Thermometers

- Need an accurate reference device, e.g., a instrument of known accuracy.
- Need a testing device that provides consistent temperature

THERMAL PROCESSING TRAINING

Calibration Tree for MIG Thermometers

- The accurate reference device must be traceable to a national or international standard
- In the U.S., traceability is provided by the National Institute of Standards and Technology (NIST)
- Records of the accuracy checks must be maintained

- Records must specify the following information:
 - Identification of the device (MIG/DTG/RTD)
 - Manufacturer of the device
 - Identification of the reference device
 - Equipment and procedures used for check
 - Date and test results
 - Name of person or facility performing test
 - Date of next test (optional)

- Each device must have a tag, seal, or other means to identify it and correlate it with the accuracy check record
- A record is necessary for documenting the accuracy of the reference device
- For acidified foods, no specific requirements on the type of device – should still test for accuracy

Temperature/Time Recording Devices

Low-acid foods:

- Required for each retort
- Can be combined with the steam controller to be a recorder controller
- Provides a permanent record of temperature and time for the thermal process

Temperature/Time Recording Devices

- The temperature/time recorder should agree as close as possible with MIG/RTD but never higher
- Accuracy to 1°F
- Pen arc adjusted properly
- Time of day set properly
- Prevent unauthorized changes with a lock or notice

THERMAL PROCESSING TRAINING

Chart-Type Recorders

- Use appropriate chart paper
- Graduations not to exceed 2°F within a range of ±10°F of the process temperature
- Scale not to exceed 55°F/inch within ± 20°F of the process temperature

Temperature/Time Recording Devices

- Continuous line or multipoint plotter
- Installation location of recorder bulb or sensor will vary based on the type of thermal processing system

Temperature/Time Recording Devices Acidified Low Acid Canned Foods

- Pasteurizers must be equipped with a temperature/time recording device
- Must be operated to ensure uniform heat distribution throughout the processing system
- Heat distribution data must be kept on file

Temperature Control System

- Each retort must have an automatic steam controller
- Air operated, electrically operated or selfactivated
- Controller may be combined with recorder to form recorder-controller

Pneumatic Control System

THERMAL PROCESSING TRAINING

PV - Pilot Valve

D - Diaphragm

F - Flapper Valve

N - Nozzle

R - Reducing Tube

S - Valve Seats for Pilot Valve Plunger

THERMAL PROCESSING TRAINING

Pneumatic Control Valve

TRAINING

Electronic Automated Control Systems

- Can be programmed to control entire process
- Consult with processing authority
- Regulatory review may be necessary

ICON by Stock

Momentum by FMC

Instrument Air Supply

Instrument Air Supply Requires:

- Adequate filter system
- Clean, dry air at the proper pressure
- Independent air supply system

Air Supply

THERMAL PROCESSING TRAINING

TRAINING

Pressure Gauges

- Scale should not exceed 2 PSI
- Useful when processing with overpressure, pressure cooling and as safety device

Timing Devices

- Wristwatches are <u>not</u> permitted
- Use analog or digital clock
- Located where easily and accurately read

Maintenance

Instrument and plumbing maintenance is essential to proper operation

The regulations require that each thermal processing system be examined at least **once a year**

Equipment

Steam Supply:

- Steam is the most common heating medium
- Supply of steam to thermal processing area must be adequate to bring the retort up to process temperature

THERMAL PROCESSING TRAINING

Valve Types and Uses

Globe

- Globe valve better sealing
- Gate valve full flow

Gate (Rising stem)

Valve Types and Uses

- Gate or Ball: Used on vents for rapid discharge and are full flow
- Air and water lines connected to the retort
 must be equipped with a globe valve or other
 suitable valve to prevent leaking into the retort
- Double block and bleed configurations or three-way valves are often installed on water or air lines used for cooling

THERMAL PROCESSING TRAINING

Set-up to protect against leaking

Bleeders

Small openings on retorts used for:

- Circulation of steam
- Air removal that comes in with the steam
- Condensate removal

Required on external wells when the MIG/DTG and recorder probes are installed in an external well

Spreaders

- Continuation of steam or water lines inside retort
- Perforated pipe to provide uniform distribution of steam or water in the retort

Mufflers

- Used on vents and bleeders to reduce noise
- Must not reduce air removal or interfere with heat distribution
- Cartridges must be inspected and replaced as needed

Pasteurizers for Acidified Low Acid Canned Products

- Use steam or water at atmospheric pressure
- Generally heater/cooler combination
- Continuous container handling
- Need temperature distribution studies to show how uniform heat is maintained

Process Room Operation

Posting of Thermal Processes

Operating processes and procedures **must** be posted in conspicuous place or be readily available to the operator and CSI

Prevention of Retort Bypass

 A system for product traffic control must be established to prevent containers from bypassing the retort

 Each crate or at least one container in each crate must be marked with a heat sensitive

indicator

Heat-Sensitive Indicators

- THERMAL PROCESSING TRAINING
 - Paint, tags, tape, or ink
 - Color change merely indicates heating medium contacted the container
 - Visual check must be performed

TRAINING

Other Precautions

- Close retort door only when ready to start the thermal process
- Cans of doubtful status must be destroyed

Coding of Containers

- Each container must be coded
- Codes are embossed or imprinted

May be legibly marked on a securely affixed

container label

Coding of Containers

Code Requirements:

- Product unless printed on the container
- Year packed
- Day packed

Coding of Containers

Importance of Coding:

- Provides way to isolate and/or retrieve questionable product
- Frequent code changes minimize amount of questionable product

Initial Temperature (IT)

 Temperature of the coldest component in the product when thermal process begins

Must be determined for coldest container in

retort

Initial Temperature

The Initial Temperature is a critical parameter and is as important to adequacy of the heat process as retort temperature and process time

Product Incubation

FSIS requirements:

- Temperature indicating device
- Means of circulating the air inside the incubator
- Time/temperature recorder
- 1 container per retort load or 1 per 1,000 containers
- Samples held at 95°F ± 5°F for 10 days (240 hours)
- Product held until incubation completed
- May propose alternate plans

THERMAL PROCESSING TRAINING

Questions

Questions?

