Module 17. Closures for Glass Containers

Section 9 CFR 431.2(c)
Purpose of Module 17:
- Provide knowledge of common closures and techniques to evaluate closures for glass containers.

Performance Objectives:
- Can evaluate glass closure examinations and determine whether recorded results are complete and within specification.
The Basic Parts of a Glass Container

- **Finish**: Holds cap or closure
- **Body**: Made in body mold
- **Bottom**: Made in bottom plate

Continuous Thread (C.T. for Screw Caps)

Push On Twist Off (PT)
The Finish

- **Sealing Surface**: Contacts sealing gasket
- **Glass Thread or Lug**: Protruding ridges for fastening closure
- **Transfer Bead**: aids in transfer of container
The Finish (2)

- **Vertical Neck Ring Seam**: A line from matching the two parts of neck ring

- **Neck Ring Parting Line**: Horizontal line from matching neck ring parts with body-mold parts
The Body

- **Shoulder:** Top portion where diameter decreases
- **Side Wall:** Area between shoulder and heel
- **Heel:** Curved portion at bottom
- **Mold Seam:** Vertical line from matching two parts of body mold
The Bottom

- **Bottom Plate Parting Line**: Horizontal line from matching body-mold parts with bottom plate
- **Bearing Surface**: Portion on which container rests
Discussion of the Finish

- Hundreds of different finishes
- Specific finishes are designed for specific closures
- Glass finishes are standardized
Terms for Glass Closures

- **Panel**: Flat center of cap top
- **Radius of Shoulder**: Connects panel and skirt
- **Skirt**: Side of cap that serves as gripping surface
Terms for Glass Closures

- **Lug**: Protrusion from curl that holds cap in place
- **Thread**: Spiral groove on continuous thread closures

![Diagram](image)
- **Coatings**: Protect cap metal, adhere gasket material and decorate closure
- **Gasket**: Sealing member of cap
- **Plastisols**: Gasket material
- **Safety Button or Flip Panel**: Raised, circular area in panel center used in dud detection and as an indicator to consumer
The vacuum within the container plays a vital role in forming and maintaining a good seal.

1. Headspace
2. Product sealing temperature
3. Air in product
4. Capper vacuum efficiency
3 Principal Vacuum Closure Types

- **Low-acid products:**
 - Lug or twist cap
 - PT (Press-on Twist-off) cap

- **Acidified products:**
 - Lug or twist cap
 - PLCT (plastisol-lined continuous thread) closure
Closure Evaluation

- Visual examinations (non-destructive)
- Closure examinations and tests (destructive)
 - These examinations must be made either before or after thermal processing
 - The establishment must have specification guidelines for closure integrity on file and available for review by Program employees
Tests and Observations for Closure Application and Defects

THERMAL PROCESSING TRAINING

Tests and Observations for Closure Application and Defects
Tests and Observations for Closure Application and Defects

CRUSHED LUGS
- Slight bend inward
- All lugs
- All lugs scratched
- Severe to slight
- Impression even but light

STRIPPED CAP
- Note out of round condition
- Bare metal visible on inside of each lug
- Impression light and slightly irregular
Frequency of Inspection

- **Must** be inspected by a trained technician at regular intervals to ensure satisfactory closures.
- Includes both visual and destructive tests.
Visual Examinations

- At least one container from each capper
- Include an examination for closure and container defects
Visual Examinations

- Defects **must** be recorded along with corrective actions
- Should examine every 30 minutes
- Must examine at start of production, after container jam, and after machine adjustment
Cocked-Cap Detectors and Ejectors

- Serve to eliminate problem containers at capper
- Signal that problem exists
If properly maintained and checked, will monitor seal quality and serve as useful tool.
Physical Examinations

- Must be conducted EITHER before OR after thermal processing
- Should be made at intervals not to exceed four hours of continuous closing machine operation
- Results along with any necessary corrective action must be promptly recorded
Physical Examinations

- Additional examinations **should** be made at start of production, after a container jam, and after machine adjustment
Security

- Most reliable measurement of proper lug cap application
- Security value ranges are specified by closure manufacturer
Security Value Measurement

- Make vertical line on cap and jar
- Open cap until vacuum is broken and reapply until it is finger-tight
- Measure distance between vertical lines
Security Value Measurement

Mark applied by Inspector

Security Measurement (in 1/16th in.)
After processing and cooling values will be lower.
Key Notes

- Headspace, product temperature, entrapped air in the product, and capper vacuum efficiency affect vacuum formation.

- Examinations of cap application should be done to assure that the cap is level and properly seated on the finish, vacuum is adequate and for gasket impression checked after processing.
Key Notes (2)

- Lug cap application should be evaluated for level cap, pull-up, security, adequate vacuum and gasket impression after processing.
- PT cap application should be evaluated for level cap, adequate vacuum and gasket impression after processing.
- Corrective action must be taken when readings outside of specifications exist or when caps are loose.
Questions?