

TRAINING

Module 12. Hydrostatic Retorts

9 CFR 431.6(b)(5) Hydrostatic Retorts

Purpose and Objectives

- Purpose of Module 12
 - Provide an understanding of components and operation of equipment used for hydrostatic retorts.
- Performance Objective
 - Assess compliance of hydrostatic retort equipment and perform inspections

THERMAL PROCESSING TRAINING

Hydrostatic Retort

Introduction

THERMAL PROCESSING TRAINING

- Constant process temperature
- Continuous container conveyor
- Steam or cascading water with overpressure

Processing Chamber Pressure

THERMAL PROCESSING TRAINING

- Hydrostatic pressure of water columns counterbalance steam pressure
- Maximum process temperature limited by maximum height of legs

Description of System

Container-Conveyor:

- Carriers for holding containers
- Carriers limit container sizes
- Multiple container-conveyors

Feed and Discharge Stations

A variety of mechanisms are used to load and unload containers from conveyor.

Feed and Discharge Stations (2)

THERMAL PROCESSING TRAINING Dual Chain Stick

In-Feed Section

- Extends from feed station to entry into first water column
- Section may be covered

Feed or Inlet Leg

- Water column(s) prior to entry into processing chamber
- Independent temperature control
- Steam injection at base

Processing Chamber (Steam Dome)

THERMAL PROCESSING TRAINING

- Temperature control independent of water legs
- In steam retorts referred to as "steam dome"

Discharge or Exit Leg

- Water column(s) prior to return to atmospheric pressure
- Independent temperature control

Discharge Leg Temperature

- Steam injection to heat
- Maintained by container heat (primary)
- Cross-circulation between legs (usually done)
- Heat exchanger to cool leg if more rapid cooling is desired

THERMAL PROCESSING

TRAINING

Water Circulation and Temperature Control

TRAINING

Container Cooling

- □ Cascading water
- Water sprays

TRAINING

Installation and Operation of Retorts

Instrumentation

Temperature Indicating Device

- Each processing chamber must have temperature indicating device and temperature/time recorder
- Must be installed near steam-water interface
 3 inches above maximum water level

Water Leg Temperature

When minimum temperature in the water legs is specified in process schedule there **must** be:

- 1. Temperature indicating device
- 2. Temperature/ time recorder

Temperature/Time Recorder

THERMAL PROCESSING TRAINING

- Bulb must be installed in processing chamber
- Between steamwater interface and lowest container position

Steam Controller

- Must have an automatic steam controller
- May be recorder-controller

Preparation for Processing

- Operating procedures must be documented by manufacturer or processing authority
- Steam dome must be vented The firm should refer to the equipment manufacturers' instructions for venting or have a written vent schedule from their Process Authority

TRAINING

Bleeders

Bleeders **must** be:

- 1/4-inch or larger opening
- Located opposite steam entry
- Wide open during processing
- Arranged to observe functioning

Water Level Control

- Level defines conveyor length in processing chamber(s) or steam dome
- Level affected by height of water legs and processing chamber temperature/pressure
- Called steam-water interface

Water Level

Water Level:

Maximum level established by manufacturer

Water level fluctuations:

- Affect process time
- Caused by containers entering and leaving water legs
- Level controlled by system that adds and removes water to the legs

Process Timing

- Container-conveyor is driven by variable speed motor
- Changing container-conveyor speed changes process time

Container Conveyor Speed

The Container Conveyor Speed must:

- Be checked and recorded at start of processing and must be checked and recorded at intervals not to exceed 4 hours to ensure correct chain speed
- Provide means to prevent unauthorized changes

Processing Considerations

Feed and Discharge Legs

- Time in heated water legs may be included in scheduled process
- May reduce process time

TRAINING

Water Leg Temperature

If the water leg is included in process schedule, the temperature must be above specified temperature.

Water Level Fluctuation

- Process time shortened if above maximum level
- Automatic device (high water sensor) should stop container-conveyor

Water Level Fluctuation (2)

Water contacting containers in bottom loops:

- May result in underprocessing
- Containers must be segregated
- Processing authority evaluation
- Numbered carriers/diagram

Initial Temperature

- Measure using method and frequency in the establishment's written procedure
- Feed leg temperature must be considered

Record Requirements

- Critical factors must be measured and recorded in accordance with the method and frequency in the written procedure
- Records must include conveyor (chain) speed

TRAINING

Key Points

- Hydrostatic retorts use water columns to counterbalance the pressure in the steam dome
- Each retort must be equipped with at least one MIG and time-temperature recording device, in the steam dome as well as in the water legs, if applicable
- The water level in the base of the steam dome must be controlled below the maximum to prevent process deviations
- Process time is dependent on the length of the conveyor chain and the speed of the chain

THERMAL PROCESSING TRAINING

Questions?

Questions?

