

# Module 11. Retorts— Processing With Overpressure

# Thermal Processing for Meat and Poultry Products Training





1



What is Overpressure?

THERMAL PROCESSING TRAINING

# **Overpressure:**

 Pressure supplied to a retort in excess of the normal pressure exerted by the heating medium at a given temperature





**Purpose of Overpressure** 

THERMAL PROCESSING TRAINING

# Overpressure

- To maintain container integrity
- To permit adequate processing







Overpressure requirements vary:

- Too much at the start of the process could distort containers (crush containers) or damage seals
- Too little during heating could lead to container rupture or seal damage, slow heat penetration, or interfere with water circulation patterns in the retort
- Too little during cooling could lead to container rupture or seal damage





- Product fill temperature
- Container headspace
- Container vacuum
- Entrapped air
- Processing temperature



### **Overpressure Applications**

THERMAL PROCESSING TRAINING

- Plastic containers
- Flexible pouches
- Metal trays
- Glass jars











General Characteristics of Retorts that Provide Overpressure

THERMAL PROCESSING TRAINING

- Introduced steam or air is the source of overpressure
- Batch processing, not continuous container handling
- Static (still), rotary (end-over-end), and back and forth (Shaka®process) agitation models



#### **End-Over-End Agitation**

THERMAL PROCESSING TRAINING

- Containers are held in place in the basket
- Rotating framework holds baskets
- Variable rotational speed
- Custom racking system







**End-Over-End Agitation** 





# Back and Forth (Shaka®process) Agitation

THERMAL PROCESSING TRAINING

- Containers are held in place in the basket
- Variable double reciprocating strokes



 Custom racking/basket system





#### **Retorts that Provide Overpressure**

THERMAL PROCESSING TRAINING

- Processing medium:
  - water immersion,
  - cascading water,
  - water spray, or
  - steam/air mixture



Water Spray





THERMAL PROCESSING TRAINING

Installation and Operation of Overpressure Retorts

Common Considerations:

- Installation, operation, and controls vary based on the processing medium
- Usually equipped with various alarms and warning devices to monitor critical operating procedures







#### **Instrumentation-Pressure Control**

THERMAL PROCESSING TRAINING

- Each retort must have a pressure recording device
- Each retort should have pressure gauge







THERMAL PROCESSING TRAINING

- Each retort **must** have a means of providing uniform HD/TD during processing
- The efficiency of the circulation system must be documented in HD/TD data or other documentation from a PA
- HD/TD data must be on file at the establishment to support the retort operating procedures





## Factors that may Affect Heat Distribution or Processing Medium Circulation

THERMAL PROCESSING TRAINING

- Crate and rack design
- Loading configuration
- Container type, size, or position





**Nested Pouches** 





THERMAL PROCESSING TRAINING

# Operating pressure

- Come-up procedures
- Partial loads
- Fan or pump off or not functioning properly

**Factors that may Affect Heat Distribution or** 

**Processing Medium Circulation** 





# **Full Water Immersion Retorts**





Water Immersion Retort Characteristics

- Water is the heating/cooling medium which completely covers the containers
- Horizontal and vertical configurations
- Introduced air or steam provides overpressure
- Several manufacturers





- Sensor (probe) located beneath water surface
- Sensor (probe) must extend at least 2" into water
- Vertical retorts sensor (probe) may be located in thermometer pocket





- Horizontal retorts sensor (probe) must be directly in shell for a retort using a steam spreader
- Horizontal retorts using a heat exchanger sensor (probe) is located on the water return pipe before the entry to the exchanger





THERMAL PROCESSING TRAINING

- Recorder sensor (probe) usually adjacent to temperature indicating device sensor
- May be combined with the steam controller to be a recorder-controller
- Vertical retort sensor (probe) must be below lowest crate support where steam does not strike it directly





THERMAL PROCESSING TRAINING

# Instrumentation – Recorder/Controller Sensor Location

- Horizontal retort sensor (probe) must be between water surface and center line in a retort using a steam spreader
- Horizontal retorts using a heat exchanger sensor (probe) is located on the water return pipe before the entry to the exchanger





- Each retort must be equipped with a water level indicator, e.g.,
  - Water sight glass tube
  - Water level alarm (visual and audible)
  - Petcock valves





THERMAL PROCESSING TRAINING



SIGHT GLASS







THERMAL PROCESSING TRAINING





- THERMAL PROCESSING TRAINING
  - Water immersion retorts must be equipped with non-clogging, watertight drain valve to ensure minimum water level
  - Must have screens over drain openings to prevent loose containers and debris from entering circulation system





- For vertical water immersion retorts:
  - Bottom crate supports are **required**
  - Crate centering guides are recommended
  - Bottom baffle plates prohibited



#### **Vertical Retorts**



29



Vertical Retorts - Water Circulation

- By compressed air or
- By mechanical means such as a pump





- Air is introduced with steam through bottom spreader
- Air bubbles agitate water as they rise upward
- During CUT, a greater volume of air is needed to prevent steam hammer (noise)



Vertical Retorts - Compressed Air Water Circulation

- During processing, the air volume is reduced to recommended level
- The air in the retort headspace maintains the overpressure
- Two steam spreader designs





#### **Vertical Retorts - Spreader Configurations**







# AllPax

### **Horizontal Retorts - Design**

## **Stock Rotomat**







**Horizontal Retorts - Design** 

# AllPax or Stock Rotomat





THERMAL PROCESSING TRAINING

## Horizontal Retorts - Mechanical Water Circulation

- Horizontal retorts need a water recirculation system which is usually a pump
- Suction manifold in the bottom of the retort
- Distribution system (spreader) along the top of the retort
- Suction outlets must be protected with screens
- Pump must be equipped with warning device to indicate when it is not functioning





# Water Immersion Retort - Crates/Container Orientation/Loading Configuration

- THERMAL PROCESSING TRAINING
  - Racks designed to positively hold containers
  - Must provide free movement of the water
  - Adequacy must be documented in HD/TD data







THERMAL PROCESSING TRAINING

Water Immersion Retort - Cooling Water Supply

- Should not strike jars directly
- Vertical retorts introduced into process water about 4 inches above top layer of jars
- Horizontal retorts introduced into suction side of water circulation system





# Water Immersion Retort – Critical Operating Parameters

THERMAL PROCESSING TRAINING

- Water level
- Air circulation rate for vertical retorts
- Water recirculation rate for retorts using pumps
- Overpressure
- Reel speed timing for agitating processes







THERMAL PROCESSING TRAINING

Agitating Water Immersion Retorts -Rotational Speed

- Must be checked before process timing starts and, if needed, adjusted as specified in the process schedule
- Must be determined and recorded for each retort load
- Prevent unauthorized changes
  - Lock or Posted Sign





THERMAL PROCESSING TRAINING

### Agitating Water Immersion Retorts -Rotational Speed

Crate Position Rotational Speed is Determined Electronically by Sensors on the Reel Shaft



# **Cascading Water Retorts**





- Water is the heating/cooling medium that rains (cascade) down over and through the containers
- Horizontal configuration
- Introduced air provides overpressure
- Several manufacturers





# **Exploded View of Cascading Water Retort**

THERMAL PROCESSING TRAINING





**Cascading Water Retort Design** 

THERMAL PROCESSING TRAINING

#### Water is Recirculated with a Pump





#### **Cascading Water Retort Design**





THERMAL PROCESSING TRAINING

**Cascading Water Retort Design** 

#### Screen in Water Return Trough on Retort- 1.5 mm Holes



47



#### **Cascading Water Retort Design**



Rear View with Heat Exchanger and Water Return at Rear of Retort





#### **Cascading Water Retort Design**

#### **Water Shower**





### **Cascading Water Retort Design**

#### **Separate Water Distribution Manifolds**





### **Cascading Water Retort - Instrumentation**

THERMAL PROCESSING TRAINING





#### Cascading Water Retort – Water Pressure Monitoring

THERMAL PROCESSING TRAINING



Pressure Differential Sensor is used to Alert Operator to Changes in Pressure from One Side of Pump to the Other Side





## **Cascading Water Retort – Compressed Air Entry**

THERMAL PROCESSING TRAINING





THERMAL PROCESSING TRAINING

# Cascading Water Retort - Crates/Container Orientation/Loading Configuration

- Must provide free movement of the water and allow water to contact the containers
- Adequacy must be documented in HD/TD data





THERMAL PROCESSING TRAINING

### Cascading Water Retort - Water Distribution Manifold Maintenance

#### **Mineral Scale Buildup**





THERMAL PROCESSING TRAINING

 Water level must be maintained within the range specified by retort manufacturer or PA during come-up, thermal processing, and cooling periods





> Water recirculation (flow rate, e.g., gallons per minute) for maintaining uniform heat distribution in the retort must be documented by HD/TD data or other documentation from the PA





Cascading Water Retort – Critical Operating Parameters

THERMAL PROCESSING TRAINING

- Stepped come-up procedures
- Water recirculation (flow) rate
- Overpressure
- Reel speed timing for agitating processes





# **Water Spray Retorts**





- THERMAL PROCESSING TRAINING
  - Water is sprayed over the containers from several angles
  - Direct and indirect steam heating of the process water
  - Some inject steam into the retort
  - When steam is injected, a steam/water mixture heats the containers





Water Spray Retort Characteristics

THERMAL PROCESSING TRAINING

- Horizontal configuration
- Introduced air provides overpressure
- Several manufacturers





THERMAL PROCESSING TRAINING

#### Water Spray Retort Design





#### Water Spray Retort Design





Water Spray Retort Design

THERMAL PROCESSING TRAINING

#### **Steam Spreaders and Spray Bars**





#### Water Spray Retort Design

#### Water Return Through Screened Exit Ports





> Like cascading water retorts, a stepped program with a temperature overshoot is used to bring the retort's cold spot up to process temperature





THERMAL PROCESSING TRAINING

# Water Spray Retort – Crates/Container Orientation/Loading Configuration

- Must provide free movement of the water and allow water to contact containers
- Adequacy must be documented in HD/TD data





THERMAL PROCESSING TRAINING

 Water level must be maintained within the range specified by retort manufacturer or PA during come-up, thermal processing, and cooling periods





THERMAL PROCESSING TRAINING

 Water recirculation (flow rate, e.g., gallons per minute) for maintaining uniform heat distribution in the retort must be documented by HD/TD data or other documentation from the PA





Water Spray Retort – Critical Operating Parameters

- Stepped come-up procedures
- Water recirculation (flow) rate
- Overpressure to maintain container integrity
- Reel speed timing for agitating processes



# **Steam/Air Retorts**





**Steam/Air Retort Characteristics** 

THERMAL PROCESSING TRAINING

- A mixture of steam and air is the heating medium
- Steam/air ratios range from 75% steam/25% air to 95% steam/5% air
- A fan is used to maintain uniform steam/air circulation
- Introduced air provides overpressure
- Several manufacturers





#### **Steam/Air Retorts**







#### **Steam/Air Retorts**





- THERMAL PROCESSING TRAINING
  - Temperature indicating device and recordercontroller probes are usually inserted directly into retort shell in such a position that steam does not strike them directly
  - The location of the probes on the retort may depend on the type of steam/air retort.





> Like cascading water/water spray retorts, a stepped program with a temperature overshoot is used to bring the retort's cold spot up to process temperature





- A method of circulating the steam/air mixture must be provided
- The circulation system, usually a fan, must be checked for proper functioning and must be equipped with device to warn the operator when it is not functioning





THERMAL PROCESSING TRAINING

# Steam/Air Retort - Critical Operating Parameters

- Stepped come-up procedures
- Percent steam/air mixture (e.g., 90%/10%), or maximum pressure (e.g., 25 PSIG)
- Steam/air mixture circulation and flow rate (e.g., 30 cubic feet/second)
- Reel speed timing for agitating processes





The steam/air mixture or the temperature and pressure (that represents a specific steam/air ratio) used to thermal process a product must be the same mixture or temperature and pressure documented in the heat penetration tests used to establish the product's process schedule





Questions

# Questions?

