Using Expert Elicitation to Attribute Foodborne Illness to Food Consumption

Sandra Hoffmann, Paul Fischbeck, and Alan Krupnick

FSIS Public Meeting: Attributing Illness to Food
April 5, 2007
Take Home Messages

- Know why you’re doing an attribution.
- Expert elicitation can improve the information basis for risk management.
- Our expert elicitation study contributes information relevant to risk-based food safety management.
Know why you’re doing an attribution

1. You can attribute foodborne illness to many different factors
 - pathogens (Mead et al., 1999)
 - food consumption (Hoffmann et al., 2007)
 - food contamination
 - food production, processing and handling

Decision needs must drive attribution. Mixing purposes can result in inconsistent attribution categories.

2. Having attributions that attribute all foodborne illness to broad categories are a useful starting point.
Expert Elicitation Is Widely Used to Inform Risk-based Decision Making

- Systematic methods for eliciting and integrating expert judgment
- Widely used in government and industry
- Methods vary
Expert Elicitation Can Shed Light on Food Attribution Data Gaps

- Outbreak data is improving, but incomplete
- Studies indicate outbreak cases and sporadic cases may have different associations with food
- FoodNet is not yet nationally representative
- Experts have relevant knowledge and experience
What we did.

- Surveyed 44 nationally recognized food safety experts
- Asked experts for their best estimates and their high and low bound
- 11 food categories: modified CSPI food categories
- 11 pathogens: FoodNet pathogens, *Toxoplasma gondii*, and Noroviruses
- Used mean expert food attribution percentages to attribute Mead pathogen estimates to foods.
Multiple Uncertainty Measures Characterize Knowledge about Food Attribution

- Agreement among experts’ best estimates
- Agreement between experts’ and outbreak-data-based attribution estimates
- Experts’ mean individual uncertainty
- Variability in experts’ individual uncertainty
Uncertainty by Food

[Graph showing correlation between average expert-outbreak correlation and average expert-expert correlation for different food categories such as Poultry, Seafood, Beef, Dairy, Eggs, Breads, Pork, Luncheon, Game, Produce, Beverages.]

[Another graph showing correlation between average expert-expert correlation and average credible interval for the same categories.]
Regressions Analysis

- Uncertainty measures are smaller with more outbreaks and more years of experience
- Expert characteristics do not affect best estimates, but do affect individual confidence
- Pathogens are more important than foods in explaining outbreak/expert difference
- Foods are more important than pathogens in explaining variability in individual confidence
Major Stories about Attribution

• 15 food/pathogen pairs cause 90% of foodborne illnesses in the U.S.

• 22 food/pathogen pairs cause 90% of deaths from foodborne illness in the U.S.

• Outbreak-based and expert attribution estimates agree on many, but not all the top exposure routes for foodborne illness and death.
Differences in Top Causes of Illness

• Noroviruses/produce (1 for both)

• Noroviruses/seafood (2 for both)

• Campylobacter/produce (3 EE), (not in top 15 OB)

• Campylobacter/poultry (3 OB), (not in top 15 EE)

• Noroviruses-RTE Meat (15 EE), (4 OB)
Take Home Messages -- Again

- Know why you’re doing an attribution.
- Expert elicitation can improve the information basis for risk-based food safety regulatory decisions.
- Our expert elicitation study:
 - provides food attribution estimates;
 - depicts the state of knowledge about the association between food consumption and foodborne illness;
 - suggests places where outbreak data may need to be supplemented.