NACMCF RTETesting_MainText_Final_12 July 2021 LP_cleancopyFSISwebsite.docx 1 of 63

1	Microbiological Testing by Industry of Ready-to-Eat Foods Under FDA's Jurisdiction for Pathogens
2	(or Appropriate Indicator Organisms): Verification of Preventive Controls
3	ADOPTED 22 APRIL 2021, WASHINGTON, DC
4	2018-2020 NATIONAL ADVISORY COMMITTEE ON MICROBIOLOGICAL CRITERIA FOR FOODS
5 6	Table of Contents EXECUTIVE SUMMARY 3
7	BACKGROUND
8	CHARGE QUESTIONS TO THE COMMITTEE
9	INTRODUCTION
10	RESPONSES11
11 12 13	Charge Question 1. For the food categories listed above, what principles and criteria should a company apply in determining the need for and in designing an effective microbial testing program to verify that processes are effectively controlling microbial pathogens?
14 15	Microbiological testing for verification of process control (as part of the facility's food safety system) is different from microbiological testing for lot acceptance
16 17 18 19	Microbiological testing of finished product is most useful (1) if ingredients in a food have the potential to contain pathogens and there is no kill step (or a marginal kill step) in the manufacture of the finished product, and/or (2) when finished products is reasonably likely to be contaminated from the environment
20 21	Charge Question 2. Are there situations in which testing other than for pathogens or indicator organisms, e.g., enzymes, would be an appropriate verification activity.
22 23	Charge Question 3. Are there situations where verification testing would not be necessary if there is evidence that the appropriate treatment was, in fact, applied
24 25 26 27	Charge Question 4. When microbial testing is an appropriate verification activity, what considerations should a company apply in selecting the test microorganism (e.g., specific pathogen or indicator organism) and type of test (e.g., presence/absence or enumeration)? What are appropriate indicator microorganisms for verifying processes that adequately control pathogens?
28 29 30	Charge Question 5. What principles and criteria should a company apply in determining the frequency of testing finished product to determine if the company's food safety system for that product is effective?
31 32 33 34	Charge Question 6. Generally microbial testing by a company to verify process control is conducted on "finished product." Are there situations in which testing at sites other than at the end of the process can achieve the goal of verifying the adequacy of control of microbial hazards? Describe the situations and the testing that would be appropriate

35 36 37 38 39	Charge Question 7. The CGMP & PC rule requires environmental monitoring for an environmental pathogen (e.g., Listeria monocytogenes, Salmonella) or for an appropriate indicator organism as a verification activity if contamination of an RTE food with an environmental pathogen is a hazard requiring a preventive control (such as sanitation controls). What impact does environmental monitoring have on frequency and extent of product testing verification activities by companies?27
40 41 42 43 44	Charge Question 8. (1) What criteria should a company apply in determining that microbial testing results indicate a loss of process control? (2) What actions should a company take if test results indicate a loss of process control? (3) When verification testing indicates loss of process control, to what extent should verification testing be increased, how far upstream and downstream should it go, and when and how should it be scaled back?
45 46	Answer Q8 -1. What criteria should a company apply in determining that microbial testing results indicate a loss of process control?
47 48	Answer Q8-2. What actions should a company take if test results indicate a loss of process control?
49 50 51	Answer Q8-3. When verification testing indicates loss of process control, to what extent should verification testing be increased, how far upstream and downstream should it go, and when and how should it be scaled back?
52	SUMMARY AND CONCLUSIONS
53	LIST OF TABLES
54	Table 1. Comparison of responses to Charge Question 1 by commodity
55	Table 2. Comparison of responses to Charge Question 6 by commodity
56	Table 3. Charge Question 7
57	REFERENCES
58	

60 EXECUTIVE SUMMARY

61 FDA's final rule "Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive 62 Controls for Human Food" (the CGMP & PC rule) (46) requires a facility that has identified hazards 63 requiring preventive controls to verify that the preventive controls are consistently implemented and 64 are effectively and significantly minimizing or preventing the hazard. Verification activities for preventive 65 controls for microbial hazards include, as appropriate to the facility, the food, and the nature of the 66 preventive control and its role in the facility's food safety system, product testing for a pathogen (or 67 appropriate indicator organism). FDA is seeking advice from the National Advisory Committee on 68 Microbiological Criteria for Foods (NACMCF) on 1) the utility and necessity of industry testing certain 69 ready-to-eat (RTE) foods for pathogens and 2) criteria industry could apply in determining what, if any, 70 microbiological testing is appropriate for verifying pathogen control for the RTE foods produced in a 71 facility. As these are FDA inquiries, the scope of NACMCF's advice includes responses for dairy products, 72 grain-based products, meals and entrees, nuts and nut/seed products, fruits and vegetables, and spices 73 and herbs.

74

The intent of this document is to provide examples and advice for manufacturers/processors to
establish their own microbial targets and limits to meet preventive control requirements. It offers
guidance for using microbiological testing for pathogens (or appropriate indicator organisms) to verify
process control for pathogens in RTE foods under FDA's jurisdiction. Advice provided by NACMCF is
intended to guide decisions to be made by each firm based on their facility, ingredients used,
processing, packaging, level of anticipated control, shelf life of the product, intended use, or potential
storage and handling at retail or by the consumer. The NACMCF was specifically charged with offering

guidance on: 1) principles and criteria a company should apply in determining the need for and in 82 83 designing an effective microbial testing program to verify that processes are effectively controlling 84 microbial pathogens; 2) situations in which testing other than for pathogens or indicator organisms 85 would be an appropriate verification activity for a company; 3) situations where verification testing by a 86 company would not be necessary if there is evidence that the appropriate treatment was, in fact, 87 applied; 4) when microbial testing is an appropriate verification activity, considerations a company 88 should apply in selecting the test microorganisms and what are appropriate indicator microorganisms 89 for verifying processes that adequately control pathogens; 5) principles and criteria a company should 90 apply in determining the frequency of testing finished product to determine if the company's food 91 safety system for that product is effective; 6) situations in which testing at sites other than at the end of 92 the process can achieve the goal of verifying the adequacy of control of microbial hazards; 7) the 93 impacts of environmental monitoring on frequency and extent of product testing verification activities 94 by companies; and 8) criteria and action a company should apply in determining that microbial testing 95 results indicate a loss of process control and to what extent should verification testing be increased, 96 how far upstream and downstream should it go, and when and how should it be scaled back.

97

98 BACKGROUND

In 2015, FDA published its final rule "Current Good Manufacturing Practice, Hazard Analysis, and RiskBased Preventive Controls for Human Food" (the CGMP & PC rule) in title 21 of the *Code of Federal Regulations* (CFR) part 117 (*51*). A facility that has identified hazards requiring preventive controls must
verify that the preventive controls are consistently implemented and are effectively and significantly
minimizing or preventing the hazard. As specified in 21 CFR 117.165, verification activities for preventive
controls for microbial hazards include, as appropriate to the facility, the food, and the nature of the

105	preventive control and its role in the facility's food safety system, product testing for a pathogen (or
106	appropriate indicator organism). FDA has indicated that such product testing is a verification activity to
107	help assess and verify the effectiveness of a food safety plan and the facility's capability to consistently
108	deliver against it, not to establish the acceptability of every lot or batch.
109	
110	Because of the flexibility FDA provided in the rule, advice from NACMCF on 1) the utility and necessity of
111	industry testing ready-to-eat (RTE) foods for pathogens and 2) criteria industry could apply in
112	determining what, if any, microbiological testing is appropriate for verifying pathogen control for the
113	RTE foods produced in a facility, would be highly beneficial for industry. Such advice should include the
114	test microorganism(s), the sampling plan that should be used, the type of test (<i>e.g.</i> , presence/absence
115	or enumeration), the frequency of such testing, interpretation of results, and actions to take when such
116	testing indicates a loss of control. Advice from NACMCF should address the appropriate use of
117	enzymatic indicators that heat-based processes have been applied (<i>e.g.,</i> alkaline phosphatase for
118	pasteurization of milk) and whether there are situations where verification testing of products by
119	industry would not be necessary if there is evidence that the appropriate treatment was applied.
120	
121	A 2013-2015 NACMCF Subcommittee addressed a charge from the Department of Defense (DoD) on
122	Microbiological Criteria as Indicators of Process Control or Insanitary Conditions (35). That charge was to
123	develop microbiological and other possible criteria for DoD auditors to better evaluate process control
124	and insanitary conditions at the point of production. Some of the information developed in the final
125	report of that Subcommittee (35) were considered in addressing this charge. However, the focus here is
126	on practical advice for manufacturers/processors subject to the preventive control requirements in 21
127	CFR part 117 about when they should use microbiological testing for pathogens (or appropriate
128	indicator organisms) to verify process control for pathogens in RTE foods under FDA's jurisdiction. For

129	this document, process control refers to the entire operation (e.g., entire food safety system/process).
130	It is not restricted to process preventive controls. A food safety system and the manufacturing process
131	managed by that system are in control when, within the limits of a stable and predictable process
132	variation, all food safety hazards are controlled to an acceptable level (29).
133	
134	Food categories of concern include:
135	
136	Dairy Products
137	Butter, margarine
138	Cheese, hard (e.g., Cheddars), extra hard, grating (e.g., Parmesan, Romano)
139	Cheese, fresh (Queso fresco), soft, soft-ripened (Camembert), semi-soft (Edam, Gouda), veined
140	cheeses (Roquefort, Gorgonzola)
141	Cultured, pH < 4.8
142	Cultured, pH > 4.8 and <5.4
143	Dried products (including dairy ingredients used to make infant formula)
144	Frozen desserts
145	Milk and milk products (fluid)
146	
147	Grain-Based Products
148	RTE baked items, refrigerated or time-temperature controlled for safety (TCS)
149	RTE baked items, shelf stable or non-TCS
150	RTE cereals
151	RTE cold-pressed bars
152	

153	Meals and Entrees
154	RTE deli salads
155	RTE sandwiches
156	"Heat and eat" meals/entrees
157	
158	Nuts (including tree nuts and peanuts) and Nut/Seed Products
159	RTE nuts not processed for lethality (e.g., chopped untreated tree nuts)
160	RTE nuts processed for lethality (e.g., roasted tree nuts, almond milk, coconut milk)
161	RTE nut/seed butters processed for lethality (e.g., peanut butter, sunflower butter)
162	
163	Fruits and Vegetables
164	RTE fresh-cut fruits (e.g., cut melon, sectioned grapefruit, sliced pineapple)
165	RTE fresh-cut vegetables (e.g., cut celery stalks, peeled baby carrots, sliced mushrooms,
166	shredded cabbage, chopped lettuce)
167	RTE dried/dehydrated fruits (e.g., dried cranberries, raisins, dried apricots)
168	Packaged uncut leafy greens (e.g., spinach leaves, baby greens leaves)
169	
170	Spices and Herbs (include consideration for intrinsic properties in certain spices and herbs (e.g.,
171	cinnamon, cloves, oregano) that can interfere with test methodology and risk from added
172	components in spice blends)
173	RTE spices and spice blends, not processed for lethality
174	RTE spices and spice blends, processed for lethality
175	Dried, chopped herbs

176	
177	CHARGE QUESTIONS TO THE COMMITTEE
178	
179	1. For the food categories listed above, what principles and criteria should a company apply in
180	determining the need for and in designing an effective microbial testing program to verify that processes
181	are effectively controlling microbial pathogens?
182	
183	2. Are there situations in which testing other than for pathogens or indicator organisms, e.g., enzymes,
184	would be an appropriate verification activity for a company?
185	
186	3. Are there situations where verification testing by a company would not be necessary if there is
187	evidence that the appropriate treatment was, in fact, applied?
188	
189	4. When microbial testing is an appropriate verification activity, what considerations should a company
190	apply in selecting the test microorganism (e.g., specific pathogen or specific indicator organism) and
191	type of test (<i>e.g.,</i> presence/absence or enumeration)? What are appropriate indicator microorganisms
192	for verifying processes that adequately control pathogens?
193	
194	5. What principles and criteria should a company apply in determining the frequency of testing finished
195	product to determine if the company's food safety system for that product is effective?
196	
197	6. Generally microbial testing by a company to verify process control is conducted on "finished product."
198	Are there situations in which testing at sites other than at the end of the process can achieve the goal of

verifying the adequacy of control of microbial hazards? Describe the situations and the testing thatwould be appropriate.

201

7. The CGMP & PC rule requires environmental monitoring for an environmental pathogen (*e.g., Listeria monocytogenes, Salmonella*) or for an appropriate indicator organism as a verification activity if
contamination of an RTE food with an environmental pathogen is a hazard requiring a preventive control
(such as sanitation controls). What impact does environmental monitoring have on frequency and
extent of product testing verification activities by companies? Note: Committee changed "should" to
"does" for responding to this charge.

8. What criteria should a company apply in determining that microbial testing results indicate a loss of
process control? What actions should a company take if test results indicate a loss of process control?
When verification testing indicates loss of process control, to what extent should verification testing be
increased, how far upstream and downstream should it go, and when and how should it be scaled back?

214 COMMITTEE'S APPROACH TO ANSWERING THE CHARGE

215 The Committee leveraged the expertise of the Committee members, additional experts, published 216 literature and government documents to develop guidance for firms considering product testing (in 217 process or finished product) as an activity to verify that their pathogen controls are effective. In 218 addition to answering charge questions, appendices were developed for each food grouping as 219 examples of considerations in choosing type and frequency of microbial testing. With rare exceptions 220 noted in the tables within each appendices, microbial targets and limits are not for lot disposition. 221 Rather, the examples provide reference points for expected microbial population limits in foods that are 222 produced with good quality ingredients, validated lethality steps or other process controls, and rigorous sanitation and environmental monitoring programs. Each firm should establish their own microbial

- targets and limits depending on the facility, ingredients used, processing, packaging, level of anticipated
- 225 control, shelf life of the product, intended use, or potential storage and handling at retail or by the
- 226 consumer.

227 INTRODUCTION

- Historically, the role of HACCP was to effectively control hazards such as microbial contamination and if
- properly implemented, would reduce the need for finished product testing for pathogens. But, while
- this concept works to reduce or eliminate pathogen testing for some foods, other food products still rely
- 231 on frequent finished product testing for pathogens, whereas other foods focus on testing for indicator
- 232 organisms to ensure process control.
- 233 Each individual firm should consider if microbial testing of product is an appropriate verification activity,
- and if so, what are the target microorganisms that are appropriate for a given commodity? Should
- pathogens or indicators organisms be tested, or both? What is the role of environmental monitoring
- and can it be sufficient?
- 237 Microbial testing results can serve as an early warning that the process is drifting out of control or signal
- 238 potential catastrophic failures. Data collected (e.g., enumeration of indicator organisms, positive
- environmental tests) should be analyzed on an ongoing basis for trends, be used to develop statistical
- 240 process control, modify microbial limits as appropriate, and establish responses to results that exceed
- those limits.
- 242

243 **RESPONSES**

- 244 Charge Question 1. For the food categories listed above, what principles and criteria should a
- company apply in determining the need for and in designing an effective microbial testing program to
- 246 verify that processes are effectively controlling microbial pathogens?
- 247

248 Microbiological testing of in-process or finished product is appropriate for some, but not all, ready-to-249 eat (RTE) foods to verify preventive controls in a Food Safety Plan. While finished product testing is 250 generally not effective for controlling food safety, testing can be used for process and product 251 verification (30, 55). Product testing can verify that the overall production continuum is in control as the 252 final product reflects the adequacy of the processing system controls and the processing environment in 253 combination. In addition, finished product testing can be useful in detecting catastrophic failures. A food 254 processing facility can apply several criteria to determine whether microbiological testing is appropriate 255 for in-process or RTE finished products. The following eight questions were used to determine the 256 conditions that determine if microbiological testing is appropriate for each commodity group and their 257 example foods. A comparison of answers to each question for the various commodities is shown in Table 258 1. Detailed answers to questions for each commodity are provided in Appendices A-F. 259 260 **Criteria questions:** 261 1. Have pathogens been associated with the food or its ingredients and has the food been 262 associated with foodborne illness? All of the raw commodities (i.e., those without a lethality

- step) discussed in this document have been associated with pathogens and/or foodborne illness.
- 264 Such pathogens include *Salmonella*, Shiga toxin-producing *Escherichia coli* (STEC),
- 265 Campylobacter, Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Clostridium

266	perfringens, and Clostridium botulinum. Depending on the processing environment and food, a
267	frequent concern is post-lethality contamination. Foodborne illness can result from long-term
268	survival of low infectious dose pathogens such as Salmonella or growth of L. monocytogenes in
269	perishable foods at refrigerated temperatures. Spore forming bacteria survive cooking and
270	pasteurization that are designed to kill vegetative pathogens; inadequate acidification, and/or
271	temperature control have led to growth of toxigenic bacteria and been associated with
272	foodborne illness. Parasites such as Cyclospora have also been associated with some raw
273	agricultural commodities. However, there are no reliable testing methods for Cyclospora.
274	
275	2. How likely are ingredients to be contaminated, given the nature of the ingredient and the
276	robustness of the supplier programs? The likelihood that ingredients are contaminated
277	depends on the source of the ingredient and the potential exposure to contaminated
278	environments (e.g., raw milk, grains, spices, plant-based materials grown in or harvested from
279	the ground) and whether they have received a validated robust lethality process. Food
280	ingredients that have been harvested or processed to minimize contamination (e.g., ingredient
281	grown using good agricultural practices; use of sanitizers to reduce cross contamination
282	between produce items) or receive some lethality step (e.g., irradiated spices, roasted peanuts)
283	have a lower probability of being contaminated but often rely on supplier control programs to
284	prevent post-lethality contamination.
285	
286	3. Are there robust processing control procedures such as a kill step or other reduction
287	methods controls? Validated lethality steps such as thermal or high-pressure treatments (milk,
288	juices), roasting (nuts/seeds), and baking (bakery) reduce the need for final product testing as a

289 verification of preventive controls. However, even though vegetative microorganisms may be

290 destroyed, control processes need to be in place to prevent growth of toxigenic organisms 291 during production (e.g., B. cereus in batters, fillings) to ensure heat-stable enterotoxins are not 292 present after cooking; hence in-process testing may be relevant in these circumstances. 293 294 Even if a kill step is used sometime during processing, products that introduce ingredients post-295 lethality (e.g., lettuce to a sandwich, herbs to cheese curd, icings on baked goods), particularly 296 addition of ingredients that are raw or minimally processed, will be at higher risk for containing pathogens and may need testing of the individual component or the finish product. Products 297 298 with a short shelf-life present challenges for testing. While raw produce is washed, those 299 washes do not necessarily achieve substantial microbial reduction in the food. Suppliers of 300 produce to be consumed without a kill step need to comply with appropriate control measures 301 to prevent or minimize pathogen contamination (for examples of control measures, see the 302 Produce Safety Rule 21 CFR Part 112 (47)).

303

304 Although thermal treatments are common microbial reduction steps, the formulation of a 305 commodity may also reduce risk of microbiological contamination and hence the need for 306 product testing. For example, cold-filled acidified foods, such as prepared mustards, hot-sauces, 307 acidified cucumbers, or salad dressings made with vinegar, frequently rely on an acid-hold 308 procedure for lethality as an alternative to thermal processing (6, 7, 25, 33, 42). In other foods, 309 the acidity alone may not be sufficient to generate an appropriate (e.g., 5-log) kill of vegetative 310 pathogens within several hours or days, but there may be a more gradual inactivation over time. 311 Cultured dairy products, such as yogurt and sour cream, frequently have sufficient lactic acid 312 production (e.g., pH decreases to <4.8 within 4-18 h) to inhibit growth of pathogens during 313 production but also to generate additional inactivation (e.g., 1-log) during refrigerated storage

314	(18, 19, 34). However, acid type also has an effect on lethality rate during thermal processing
315	and for acid-hold lethality. For example, for foods acidified with citric acid, the killing may be
316	relatively slow, whereas foods with predominantly acetic acid (such as pourable salad dressings)
317	may result in shorter death times (1, 9, 42). Hard cheeses made with unpasteurized milk rely on
318	a combination of high-quality milk, acidity (typically lactic or propionic acid), reduced moisture
319	(a_w), and extended aging for pathogen reduction, although there is evidence that more than 60-
320	day aging may be required for safety (15, 16, 49).
321	
322	Other commodities with low a_w (dried nuts/seeds) may also undergo slow pathogen reduction
323	(17, 39). However, because the pathogen survival time may be measured in months, there likely
324	is not enough time for sufficient reduction in pathogen numbers to exclude the need for product
325	testing.
326	
327	4. Is there potential for microbial recontamination of product prior to packaging? Could there
328	be pathogens due to environmental or handling contamination? Except for foods that are hot-
329	filled, filled within a closed system, or which receive an in-package lethality step, all
330	commodities have the risk of contamination from handling or from the environment.
331	
332	5. Does the product formulation allow microbial growth or survival or cause death under
333	conditions of transportation and various types of storage (refrigerated, frozen, ambient)?
334	Microbial survival, growth, or death may occur as a result of intrinsic properties of the food,
335	such as pH, acid type, water activity, salt levels, or formulation with preservatives or due to
336	extrinsic properties such as packaging environment and transportation/storage temperatures.
337	Verification testing may be indicated where storage conditions alone (freezing or refrigeration),

338	rather than intrinsic properties of the foods, are the primary barrier to microbial growth, and
339	process and environmental controls cannot ensure absence of the pathogen. For products that
340	do not support growth of pathogens at ambient temperatures but have a history of post-
341	lethality contamination by low-infectious dose pathogen (e.g., peanut butter, dry milk,
342	chocolate), testing may be relevant to detect catastrophic failures (see appendices for
343	examples).
344	
345	6. Is this product meant for higher risk (sensitive) population? In most of the example foods
346	(Appendices A-F), the product is being made for the general population, but may be consumed
347	by individuals in higher risk populations. Special considerations should be given to foods that are
348	specifically manufactured for infants, elderly, pregnant, and immunocompromised or
349	hospitalized consumers (e.g., milk powders used for infant formula and infant cereal, foods
350	destined for nursing homes or hospitals).
351	
352	7. What is the shelf life of the product? Shelf life plays a role in the potential for microbial
353	growth as well as timeframe in which testing results will need to be available before the product
354	is distributed and consumed. The shelf lives of the example food products in this document
355	range from several days to 1-2 years. A longer shelf life increases the time available for microbial
356	growth, potential for temperature abuse, and the risk that a consumer may eat a contaminated
357	food (e.g., L. monocytogenes on soft cheeses). While short shelf life reduces the time for
358	microbial growth under normal storage conditions, it may be impractical to get results from
359	pathogen testing of the food prior spoilage (e.g., being able to detect Salmonella in cut melon or
360	STEC on leafy greens).

362	8. Will consumer handling and use increase or decrease risk of pathogen survival, growth, or
363	toxin production? Considerations should be given to the potential for abuse of the food by the
364	consumer once it leaves the control of the manufacturer and retail chain. Does the consumer
365	heat the food to reconstitute it or for palatability or eat it without further preparation? Is it
366	likely that the consumer will hold a frozen food under refrigeration or hold a refrigerated food at
367	temperatures greater than 4°C? How likely is a consumer to use a refrigerated food beyond the
368	use-by date, particularly if the food is not grossly spoiled?
369	
370	Microbiological testing for verification of process control (as part of the facility's food safety system) is
371	different from microbiological testing for lot acceptance.
372	
373	Prior to widespread use of preventive controls, traditional microbiological testing has been lot testing
374	for acceptance or rejection of that lot (i.e., to demonstrate that the lot is appropriate for its intended
375	use). The purpose of lot testing is to examine a product lot for which you have no information (8). This
376	testing can be useful when, for example, a government agency tests imports at the port of entry, or a
377	food business tests an ingredient from a new supplier. Such testing should involve analysis of a large of
378	number of samples randomly taken from the entire volume of food under consideration (8). Industry
379	also uses "hold and release" testing for certain ingredients prior to use or in response to microbiological
380	contamination issues. Such testing is useful to detect high rates of contamination, but it is not very
381	effective when food safety systems are under control or to detect low rates of contamination.
382	The purpose of microbiological testing for verification of process control is not to demonstrate that a lot
383	of food is safe, but instead to demonstrate that control measures are functioning as intended (8). Rather
384	than testing a large number of random finished product samples from a lot, a few finished product

385	samples are taken from many lots on a regular basis (routine testing). Also, samples may be taken at
386	several intervals during production of a lot in order to detect contamination that may occur sporadically
387	during production; often these are composited into one or more test samples. The results of the tests
388	are analyzed to look for trends and to determine whether they meet an established criterion or indicate
389	an out-of-control process. Testing may be conducted at a relatively high frequency initially to determine
390	process capability. Past performance could be used to reduce the amount of testing over time (55).
391	
392	Microbiological testing of finished product for verification of process control can provide risk reduction,
393	since the removal of any lots testing positive for a pathogen prevents that product from reaching the
394	consumer. In addition, if investigations into the root cause of circumstances that led to the presence of a
395	pathogen or to exceeding a process control criterion identify the source of the problem, this can be
396	corrected, which will lead to the production of safer food in the future.
397	
398	Microbiological testing of finished product is most useful (1) if ingredients in a food have the potential
399	to contain pathogens and there is no kill step (or a marginal kill step) in the manufacture of the
400	finished product, and/or (2) when finished products is reasonably likely to be contaminated from the
401	environment.
402	
403	Use of microbiological testing as a verification of control measures should consider risk to the
404	consumer. Testing is more valuable if the pathogen of concern is likely to cause serious adverse health
405	consequences or death, e.g., Salmonella vs. Staphylococcus aureus. Where there is a low risk to
406	
100	consumers, microbiological testing would be infrequent or there would be no testing.

408	Microbiological testing should be increased when information indicates that the operation is not
409	under control (e.g., records indicate a deviation at a critical control point, CCP, a pathogen has been
410	detected on a food contact surface or in the finished product, a food has been involved in illnesses).
411	
412	A facility should consider the nature and extent of supplier control programs for ingredients and
413	environmental monitoring programs in the facility in determining the role of finished product testing
414	to verify control measures in a facility. In determining testing of finished product, a firm should
415	consider all programs in place to minimize the potential for the finished product to be contaminated.
416	Having confidence that a supplier has implemented a robust program to minimize the potential for
417	pathogens to be present in ingredients is one of the components of the food safety system being
418	verified. Similarly, when the source of a pathogen in a finished product could be from the processing
419	environment, having a robust sanitation and environmental monitoring program can significantly reduce
420	the need for finished product verification testing.
421	
422	Sampling small amounts of product more frequently provides better information about process
423	control than taking a larger sample equivalent in weight to the sum of the smaller samples. For
424	example, taking small samples (e.g., 10-25g) on a frequent basis (e.g., every half hour) throughout a
425	process run and testing a composite (e.g., 375 g, or multiple composites) provides more information on
426	process control than taking a sample of the same weight (e.g., 375 g) from one or more packages,
427	because contamination is generally expected to be nonhomogeneous and it provides a better picture
428	across the day's production (31). For certain commodities, such as dry dairy products, use of
429	autosamplers are used to take samples throughout production and composite samples analyzed for
430	target microorganism (43).

432	Microbial test methods must be appropriate for the intended use (e.g., for detection of the test					
433	microorganism(s) in the specific food). To ensure reliable results, test methods should be validated to					
434	show they can detect the microorganism of concern in the specific food. For example, many spices have					
435	inhibitory properties, and the method used when testing the spice must consider this fact, e.g., by					
436	dilution of the inhibitors to the extent that the organisms of concern can grow.					
437						
438	Microbiological testing for process control can be used to drive excellence in quality and process					
439	improvement. Testing for microorganisms that are in sufficient numbers to enumerate and then striving					
440	to reduce those numbers as low as possible can enhance product quality. Knowing the expected range					
441	of counts can identify when a change has occurred in the system (e.g., faulty practices) by detecting					
442	numbers that are outside the range; investigation as to why the numbers increased can lead to the					
443	identification of a processing failure, an increase in microbial load in an ingredient, or another aspect of					
444	the process that warrants greater control.					
445						
446	SUMMARY AND CONCLUSIONS					
447	This document provides examples and advice for manufacturers/processors to establish their own					
448	microbial targets and limits to meet the preventive control requirements about using microbiological					
449	testing for pathogens (or appropriate indicator organisms) to verify process control for pathogens in RTE					
450	foods under FDA's jurisdiction. These decisions are made by each firm based on their facility, ingredients					
451	used, processing, packaging, level of anticipated control, shelf life of the product, intended use, or					
452	potential storage and handling at retail or by the consumer.					

454	Charge Question 2. Are there situations in which testing other than for pathogens or indicator					
455	organisms, e.g., enzymes, would be an appropriate verification activity.					
456	Naturally occurring enzymes in raw commodities are heat sensitive and are therefore suggested as an					
457	alternative to use of other temperature-time monitoring to verify that a lethality step has been applied.					
458	However, the use of enzyme-based tests to verify the adequacy of processing is limited, particularly for					
459	multi-component foods. For enzymes to have practical application to be used as verification in lieu of					
460	product testing, they should:					
461 462	• Have inactivation kinetics in the processing range that are similar to those of the pathogens of concern.					
463	• Be consistently present at high enough levels such that the absence of detectable enzymatic					
464	activity does not occur before adequate inactivation of the pathogens of concern.					
465	 Not be reactivated within the timeframe needed for testing the food. 					
466	Be detected using procedures that are rapid, inexpensive, and easy to perform in a food					
467	processing setting					
468	The inactivation kinetics of the enzyme determined in a food ingredient in which the enzyme is present					
469	may be different when the ingredient is combined with other ingredients, and thus may no longer					
470	reflect the inactivation of the pathogen of concern. Therefore, testing for indicator microorganisms may					
471	be more practical for process verification than testing for enzymes.					
472	Several non-microbial indicators have been identified. Alkaline phosphatase is used as an indicator of					
473	milk pasteurization (38, 45). Electron paramagnetic spectroscopy can be used to detect changes in					
474	cellulose in spices in response to gamma irradiation (40). Peroxidase has been used for validation of					
475	blanching in vegetable products (28). The peroxidases in carrots and potatoes maintained approximately					
476	50% of their activity after heating for a minute at 85°C (4); this time and temperature combination is					
477	considered to be generally sufficient to generate a 6-log reduction of <i>L. monocytogenes</i> in many food					
478	matrices (37). Thermostable deoxyribonuclease (DNase) is a product of pervasive staphylococcal					
479	growth; its presence indicates possible enterotoxin contamination in cheeses and sausages (24, 44).					
480	Other non-microbial testing verification activities may include monitoring of the rate of acid production					
481	(pH, titratable acidity) during production of cheese and cultured dairy products that assures adequate					
482	competition with pathogens to prevent growth during fermentation.					

483	Charge Question 3. Are there situations where verification testing would not be necessary if there is
484	evidence that the appropriate treatment was, in fact, applied.

- 485 For some foods, there is little or no benefit from microbial testing if validation and monitoring affirm
- 486 that the lethality process is sufficiently robust and appropriately implemented, provided there is no
- 487 opportunity for recontamination; in these instances, measuring processing parameters (e.g.,
- 488 temperature and time) provides adequate verification that pathogens have been controlled (e.g., foods
- 489 in which a lethal treatment is delivered to product in the package).
- 490 These foods include products that are processed (e.g., validated lethality process) and hot-filled or
- 491 packaged under aseptic conditions in which contamination of the food after processing is prevented, or
- 492 processed in the package (e.g., cook-in-bag). The use of "clean fill" technology for certain extended
- 493 shelf-life foods, such as some beverages, yogurts, and desserts, can provide protection from
- 494 recontamination. For aseptic and clean-fill foods, monitoring of the parameters of the process and
- 495 verification activities other than finished product microbiological testing should be sufficient.
- 496 There are also products in which the formulation is validated to be lethal to the pathogens of concern
- 497 (e.g., vinegar, highly acidic juices such as lemon and lime, many mayonnaise or pourable acidified
- 498 dressing formulations). Verification of formulation control (e.g., measurement of pH and total acidity)

499 can provide appropriate evidence that that pathogens have been controlled.

- 500 For raw foods that are not subjected to a lethality step, and for foods that are subjected to post-lethality
- 501 handling with potential for recontamination, verification testing is appropriate. Some of these products
- 502 include untreated spices, fresh fruit and vegetables, nuts, sandwiches, and deli salads.

However, for most of the foods under consideration, food safety control will involve monitoring process
parameters, ingredient testing, supplier audits, enforcement of employee hygienic practices, and a
robust sanitation program verified in part by environmental monitoring/testing for microbiological
indicator organisms, and records review that is supplemented by verification testing of food for

- 507 pathogens or, more commonly, by indicator organisms. The extent of verification testing will depend on
- the confidence in the process, including how much safety is built into the process, and the otherprograms in place.

510	Charge Question 4. When microbial testing is an appropriate verification activity, what considerations					
511	should a company apply in selecting the test microorganism (e.g., specific pathogen or indicator					
512	organism) and type of test (e.g., presence/absence or enumeration)? What are appropriate indicator					
513	microorganisms for verifying processes that adequately control pathogens?					
514	A comp	pany considering conducting microbiological testing as a verification activity should include				
515	severa	factors related to the possible presence of microorganisms and the type of test. One				
516	fundan	nental question to address is whether to test for a specific pathogen or to test for another				
517	microo	rganism that can indicate the potential presence of the pathogen of concern or conditions that				
518	could l	ead to its presence. While microbiological testing for indicator organisms (e.g., aerobic plate				
519	count,	Enterobacteriaceae, coliforms, or molds in product, or Listeria spp. or Enterobacteriaceae in the				
520	enviro	nment) does not necessarily mean that pathogens are present, trends of "out of spec"				
521	popula	tions of these organisms indicate that investigations are warranted to determine root cause and				
522	to eval	uate the impact on the safety of the food.				
523	In situa	tions where microbial testing is deemed an appropriate verification activity, several criteria				
524	should	be considered in selecting the microorganisms:				
525	a.	Which pathogens have been associated with the specific food or ingredient based on				
526		epidemiological and historical evidence?				
527	b.	Is there a relevant indicator organism that is more likely to be present in a given commodity or				
528		processing environment than a pathogen (such as testing for Listeria spp. as an indicator for				
529		Listeria monocytogenes)?				
530	C.	What impact do process steps have on the viability of pathogens or indicator microorganisms (is				
531		a thermal process sufficient to kill STEC but allow lactic acid spoilage bacteria to survive; do				
532		spores survive the process; is there a potential for growth of microbes during extended runs)?				
533	d.	What is the potential for recontamination of the food product after treatment and what are the				
534		microorganisms involved?				
535	e.	What are the intrinsic and extrinsic characteristics of the food that may be conducive/selective				
536		for specific microorganisms to grow or survive?				
537	f.	Is the food specifically intended for those individuals with higher susceptibility for infection to				
538		the pathogens of concern (e.g., hospital meals, infant foods)?				

∠J UJ 03

g. What is the expected shelf-life of the food product? Is it practical to get microbiological tests
before the end of shelf life and still market the product (e.g., hold-test for short shelf-life
products)?

542 The type of test to be used will depend on the validated microbiological methods available for a given 543 matrix, as well as regulatory requirements. Enumeration of a pathogen in a food is appropriate when 544 the risk of illness is related to the number of organisms present (e.g., B. cereus, C. perfringens, S. 545 aureus). For low-infectious dose pathogens (e.g., Salmonella, some strains of Shiga-toxin producing E. 546 coli, Cyclospora), some performance standards require detecting a single colony forming unit (CFU) in 25 547 g or more. Because routine plating methods are typically limited to detecting a lower limit of 10 CFU per 548 g, many pathogen testing protocols are restricted to determining the presence or absence of the 549 pathogen within a given sample size. In the case of some pathogens, such as Cyclospora, enumeration 550 methods do not currently exist. Although higher numbers of pathogens, such as Salmonella, reflect 551 greater risk for consumers, enumeration is not needed to take action in response to positive findings. 552 When food safety systems are under control, the presence of the pathogens of concern is not likely, and when present, they are likely to be heterogeneously distributed, and may be at a low level that is 553 554 difficult to detect (31). Thus, testing for other non-pathogenic indicator microorganisms that are likely to

be present more frequently and in greater numbers provides the advantage of being able to detect
processes in which controls have not been adequately implemented or processes that are drifting out of
control and thus are at increased risk of pathogens being present (8). The choice of indicator organism
should consider if there is sufficient scientific evidence that the microbe is relevant for the food type and
pathogen of concern (10, 14, 29, 30, 32).

Trend analysis of indicator organism populations should be able to detect when controls may require corrections before pathogens become a problem or may indicate how likely that pathogen contamination has occurred; presence or populations of indicator organisms that exceed the preset limits requires investigation to prevent contaminated product from entering commerce (54). Depending on the results of testing the food (or environment) for indicator organisms, testing the food for the pathogen may be appropriate.

Lastly, the type of testing selected should consider if there is a validated test for the pathogen of
concern in the specific food matrix and the speed of detection that allows timely decisions regarding
corrective actions or product disposition.

Charge Question 5. What principles and criteria should a company apply in determining the frequency
 of testing finished product to determine if the company's food safety system for that product is
 effective?

The frequency of testing for a finished product depends on a variety of factors, including ingredients 572 573 used in the food, whether or not the food has had a validated robust lethality process, whether the food 574 is packaged to prevent recontamination, whether the food is intended for a high-risk population, 575 sanitation controls, and whether environmental monitoring suggests the potential of recontamination 576 (see Appendices A-F of this document for specific examples). Buchanan and Schaffner (8) indicate that 577 two key factors related to frequency of testing are the frequency at which a testing criterion will be 578 exceeded and the response time that is needed in declaring a system is out of control, which are typically determined as part of a "process control study." Testing more frequently will be more effective 579 580 in identifying a loss of process control. Testing frequency should be increased when there is indication of 581 loss of control in order to assist in root cause analysis and to more quickly determine when control has 582 been restored (8).

583 In the case of products with a terminal, validated lethality process in the package (e.g., cook-in-bag,

high-pressure pasteurization of the package, or hot-fill) or those filled in a closed system (e.g.,

pasteurized milk), routine testing of finished product for pathogens may not be needed. Rather

pathogen testing may be limited to situations where process control parameters are not met (e.g., when

587 evaluating deviations for controls such as kill temperatures/time, cooling rate, or storage temperature).

588 Typically, testing can be limited to spoilage microorganisms that are indicators of shelf-life related to

quality of ingredients used or additional verification of process control such as such as *Pseudomonas*spp. in pasteurized milk or lactic acid bacteria in cook-in-bag products.

591 For products that have a microbial reduction processing step but that are subsequently exposed to the environment prior to packaging (e.g., products made with roasted nuts, butter or soft cheeses made 592 with pasteurized cream or milk, baked cakes), lot testing for indicator organisms is frequently used as 593 594 the primary verification of process control (see appendices for examples). Pathogen testing of finished product may be useful as a periodic check for process control (such as quarterly or as risk assessed). 595 596 More frequently, finished product pathogen testing is indicated if investigative testing from an 597 Environmental Monitoring Program (EMP) for Listeria or Salmonella, suggests there is potential cross-598 contamination to the product from the environment, either inherently due to design and construction of 599 the facility or equipment or due to the recurring presence of these pathogens in zones 2 or 1. In these

600	cases, the implicated product is held and tested for the pathogen using a statistically based sampling
601	program and validated detection method to determine contamination.
602	However, in cases of short shelf-life foods (e.g., prepared sandwiches, cut melon, deli salads), testing of
603	finished product for pathogens is impractical because the held product may be at the end of shelf life by
604	the time results are confirmed. For these types of products, supplier control programs and EMP are
605	more effective than finished product testing for pathogens. Microbial testing of product is focused on
606	trending indicator organisms to identify loss of process control as a supplement to supply chain control
607	for ingredients and robust sanitation/environmental controls (refer to appendices for examples).
608	For most products considered in this document, that have a long shelf stable shelf-life, unless there is a
609	loss of process controls during production, environmental monitoring indicating a problem, or
610	breakdown in supplier control programs, finished product testing might consist primarily of periodic
611	testing for spoilage organisms for shelf-life verification or for microbial indicators of loss of process
612	control (including sanitation processes).
613	One situation where pathogen testing of RTE foods or ingredients with a long shelf life may be
614	appropriate is for products that have a history of microbial contamination (e.g., milk powders). In these
615	cases, hold and testing may be frequent, such as for lot-disposition. In general, the frequency of lot
616	testing of the final product is determined by an assessment of risk. If the time for processing after
617	lethality is long (such as days), or if product has multiple points of exposure to recontamination after the
618	lethality step, frequency of testing will be greater than if the product is rarely handled and risk of
619	exposure is limited.

620 Charge Question 6. Generally microbial testing by a company to verify process control is conducted on
621 "finished product." Are there situations in which testing at sites other than at the end of the process
622 can achieve the goal of verifying the adequacy of control of microbial hazards? Describe the situations
623 and the testing that would be appropriate.

624 There are situations where testing or verification other than microbial testing at the end of the process 625 (i.e., finished product testing) can achieve the goal of verifying the adequacy of microbial hazard control 626 (see Table 2 for comparison of testing for various commodities and Appendices A-F of this document for 627 details). Alternative sites and strategies include, but are not limited to, ingredient testing by suppliers or 628 processors, robust environmental monitoring, and in-process product measurement of food qualities 629 (such as rate of acid development during fermentation) that affect microbial growth. Selection of strategies will be influenced significantly by commodity/food characteristics (for example pH or aw 630 values in food that are able to support growth vs. being inhibitory), use of a validated microbial kill-step, 631 632 and the degree of post-lethality handling.

633 In some cases, an ingredient is used in manufacturing a food where there is no additional control 634 applied for a hazard associated with that ingredient. In such instances, microbiological testing of the 635 ingredient prior to use can be an important measure in ensuring control of a hazard. Such testing is 636 often conducted by the supplier (usually the supplier contracts with an independent accredited 637 laboratory for the testing) and a certificate of analysis (COA) is provided to the customer. COAs provide 638 assurance of the suppliers' control processes at the time of sampling and testing. COAs may not be 639 needed for each shipment of an ingredient. The frequency of such testing depends on many factors, 640 including the likelihood and severity of illness if the hazard were present in the ingredient, knowledge 641 about the food safety system implemented by the supplier (e.g., obtained through an audit), and the 642 safety history of the ingredient received from the supplier. It is recommended that testing ingredients 643 from a supplier be periodically performed by the customer to verify the efficacy of the supplier's control 644 programs. The frequency of periodic testing should provide confidence that suppliers' programs are 645 indeed effective. Written procedures for the sampling plan should include how to collect and prepare 646 the samples, and describe the analytical methods used. Testing of ingredients is not warranted when the 647 manufacturer uses the ingredient in a product for which there is a process control measure that would 648 address that hazard (e.g., a kill step), unless the manufacturer's control measure is dependent on the 649 ingredient containing a low pathogen load (which could be reflected by samples testing negative for a 650 pathogen).

651 Testing of food characteristics such as pH or a_w can also be performed on in-process product or finished 652 product and can replace microbiological testing of finished product. For example, during a fermentation 653 process, the pH of in-process product could be measured to monitor the acid production that can control microbial hazards. When characteristics such as pH and aware relevant to the safety of the 654 655 product, periodic testing intervals of the food product batches should be established. Using food 656 characteristics as process control parameters requires establishing and maintaining records to include 657 equipment calibration, monitoring and verification of the parameters, review of the process control 658 records, and any corrective actions. As noted above, the rapid reduction of pH may be important in 659 controlling pathogen growth in a food fermentation process; similarly, the reduction of moisture or aw 660 during a drying process may be important to monitor. If these steps are under control, testing for 661 pathogens such as *S. aureus* or *B. cereus* or their enterotoxins (if these are a concern for the products) 662 would not be needed.

Testing of product during validation studies of process controls can provide the data needed to show
that microbiological hazards of concern can be consistently controlled. The microbiological data
obtained during validation prior to implementing a process and during the initial stages of
implementation to demonstrate consistent control may indicate that finished product testing is not
needed as long as the monitoring of the process parameters that were validated indicates the process
remains in control.

Charge Question 7. The CGMP & PC rule requires environmental monitoring for an environmental 669 670 pathogen (e.g., Listeria monocytogenes, Salmonella) or for an appropriate indicator organism as a verification activity if contamination of an RTE food with an environmental pathogen is a hazard 671 672 requiring a preventive control (such as sanitation controls). What impact does environmental 673 monitoring have on frequency and extent of product testing verification activities by companies? 674 Environmental monitoring as a verification of sanitation controls is more effective than solely testing 675 finished product, but it may not eliminate the need for finished product testing. The results of 676 environmental monitoring could indicate that product contamination may have occurred (e.g., a product 677 contact surface tests positive for Listeria spp. and follow-up tests indicate the potential for product 678 contamination) and this could lead to product testing as part of actions to identify the root cause and 679 correct the problem (52).

Determinations of potential harborage sites for pathogens through periodic testing for the pathogen or
 an indicator organism (e.g. food contact surfaces, zone two is non-food contact surfaces in close

682 proximity to food contact surfaces, zone three is non-food contact surfaces not proximal to zone one, 683 and zone four is areas remote from production) is recommended (12, 13, 20, 26, 27, 41, 52). Samples 684 should be taken several hours into processing, or at the end of the day prior to sanitation. The degree of 685 environmental monitoring is impacted by, but not limited to product characteristics, process type (wet 686 v. dry), facility and equipment design, process and product history, supplier monitoring program, and 687 target of environmental program (indicator, pathogen, non-microbial). Manufacturers should refer to 688 commodity-specific guidance for environmental monitoring programs (2, 11, 21, 22, 26, 27, 52). While 689 Salmonella is frequently the target pathogen for control in dry environments and Listeria 690 monocytogenes in wet environments, both microorganisms may need to be considered in many 691 processing environments.

692 Environmental monitoring can influence frequency and extent of product testing. An Environmental 693 Monitoring Program (EMP) should be designed to detect pathogens or indicator organisms in zones one 694 and two or other areas that pose a risk of cross-contamination to product. When contamination of an 695 RTE food by Salmonella or Listeria monocytogenes from the processing environment is a primary 696 concern, a robust EMP should reduce the need for product testing (e.g., frequency, number of samples). 697 This is particularly the case for RTE foods that receive a validated lethality treatment but may 698 subsequently be exposed to the environment (e.g., after the lethality treatment but prior to final 699 packaging) where cross-contamination is possible. Examples of RTE foods where EMP can reduce the 700 need for final product testing include cheeses made from pasteurized milk, butter, cultured dairy 701 products, dried dairy products, ice cream, roasted nuts and nut products (for summary, see Table 3; 702 details are found in Appendices A-F of this document).

For some food products, an EMP is the primary means for verification of effective sanitation control programs, and finished product testing is not typically conducted unless triggered by other data (e.g., zone 1 or zone 2 environmental positives). Examples here include RTE baked items (time-temperature controlled for safety, TCS, and non-TCS), RTE cereals, RTE grained-based baked products, RTE cold pressed bars (Appendix B), RTE meals and sandwiches with short shelf life (Appendix C), and fresh cut fruits and vegetables with short shelf life (Appendix E).

In some cases, an EMP is implemented in conjunction with routine finished product testing, although
the results from the EMP may still influence the degree and level of finished product testing. For
example, there are regulatory requirements for finished product testing for powdered infant formula
(i.e., powdered infant formula must be tested for *Cronobacter* spp. (30 X 10 g) and *Salmonella* spp. (60 X

713	25 g) in accordance with 21 CFR 106.55). Powdered infant formula may be subject to contamination by
714	Cronobacter spp. from the environment and an EMP may indicate the need for additional product
715	testing for Cronobacter. Other examples of products where both an EMP and routine finished product
716	testing is appropriate could include raw milk cheeses, certain soft cheeses (e.g., soft ripened; Appendix
717	A), RTE nuts not processed for lethality (Appendix D), and nut butters (Appendix D).
718	Charge Question 8. (1) What criteria should a company apply in determining that microbial testing
719	results indicate a loss of process control? (2) What actions should a company take if test results
720	indicate a loss of process control? (3) When verification testing indicates loss of process control, to
721	what extent should verification testing be increased, how far upstream and downstream should it go,
722	and when and how should it be scaled back?
723	
724	Answer Q8 -1. What criteria should a company apply in determining that microbial testing results
725	indicate a loss of process control?
726	For this document, process control refers to the entire operation (e.g., entire food safety
727	system/process). It is not restricted to process preventive controls.
728	
729	A food safety system and the manufacturing process managed by that system are in control when,
730	within the limits of a stable and predictable process variation, all food safety hazards are controlled to
731	an acceptable level. Building on this definition, the development of measurable attributes that indicate
732	whether a process maintains or surpasses an acceptable degree of hazard control or falls below that
733	level is required (29).
734	
735	One measure of process control is the adherence to microbiological limits established in the food safety
736	system for verification of activities such as those used for sanitation and processing controls intended to
737	mitigate microbiological hazards. Failure to meet prescribed microbiological testing limits for indicator

organisms or pathogens could constitute a loss of control. A food manufacturer should determine limits
relevant to its specific products and processes. Guidance, not regulatory limits, is provided in this section
and in Appendices A-F.

741

The measurable attribute and the type of microbial testing used to measure process control will varywith the product, the hazard being controlled, and the location of the control along the process

continuum. Once actionable limits for test results are established at points along the entire

manufacturing process, a company can then respond to those results based on food safety impact.

746

747 Measurement of process control is based on the following (35).

748 1. Sampling and assessing the output of the process for key microbial targets should occur at a frequency that limits the amount of time that a loss of control goes unrecognized. Frequency of 749 750 sampling is predicated on the propensity for the system to lose control, the prevalence of the microbial target and practicality, balancing rapid recognition of a system out of control with the 751 752 cost of sampling and testing. Sampling sites are selected that are representative of the product 753 as it passes through the process or as it exits the process. Larger sample sizes add statistical 754 relevancy. Testing frequency and sample size taken should be risked based. More intensive 755 testing is needed for foods where there is little information, e.g., for new suppliers, a new processing line or product, or for individual foods or ingredients that have been shown to have 756 757 higher prevalence of microbial risks e.g., for spices obtained in certain regions. As a firm builds a data base of microbial results, testing frequency can be refined based on an understanding of 758 759 how often product will be outside microbial limits that have been identified to verify that the 760 process is in control.

Process control performance limits and testing targets (e.g., specifications) are predefined for
the type of food product, type and extent of processing, RTE status, chemical and physical
characteristics of the food product, and the history of the process. Microbial criteria for food
safety or food quality need to be relevant to signaling a hazard in a specific product and be
attainable.

A system for documentation and review of results is in place that allows corrective action withthe appropriate level of immediacy.

4. A predetermined plan of action (POA; a corrective action plan) is developed based on a scaled 768 response considering public health impact, deviation from relevant limits, and frequency of the 769 deviation. For example, a typical set of POA choices might be take no action, move to increased 770 771 sampling frequency or sample size, conduct a predetermined internal or external audit of the process that is typical for out-of-control variability, and identify an assignable cause through 772 root-cause analysis and take corrective and preventive actions. The corrective actions specified 773 must be subsequently verified to ensure they reduce or prevent future deviations. The proper 774 775 action should be decided upon based on the severity and frequency of the deviation.

7765. The microbial measurement of insanitary conditions through environmental testing could also777indicate the loss of process control or contribute to an overall assessment of loss of control.

778

An adequate process control indicator is an attribute that can be measured with objectivity and for 779 780 which limits that indicate a need for corrective action can be established. The primary strength of 781 process control indicators is signaling the need for a more comprehensive analysis of the system and to 782 take corrective action before a noncompliance occurs. An ideal indicator of process control is one that 783 allows corrective actions to be taken before a loss of control represents a threat to public health. USDA 784 FSIS reviewed the use of process indicators in its public health risk-based inspection system (29). The 785 agency proposed two basic types of process indicators: those that may predict a future loss of control (e.g., exceeding a specific rate of out of specification (OOS) results) and those that reveal outcomes of a 786 787 past loss of control (e.g., finding a pathogen in an RTE food product, recall of a product for safety 788 reasons).

789

790 Limits (criteria) that are chosen as indicators of process control should take this distinction into 791 consideration, as the type of process control indicator will determine the criticality of the corrective 792 action. For instance, the presence of an indicator organism could reflect normal variation within acceptable parameters and not necessarily demonstrate that a process is out of control. In this case, the 793 frequency of finding an OOS result becomes important in determining loss of control. However, the 794 finding of a pathogen-contaminated product indicates an overt loss of process control that could have 795 occurred in the past, unrecognized by the facility or inadequately addressed by actions taken in 796 797 response to a prior failure.

798

The following factors should be considered when analyzing an OOS result and determining whether a
loss of process control has occurred. These include, as appropriate:

the target organism and levels detected, i.e., a qualitative pathogen (e.g., presence of
 Salmonella in a 375 g sample or environmental sample), quantitative pathogen (e.g., the
 number of *Staphylococcus aureus*) or an indicator organism (e.g., the number of coliforms).
 the type of sample analyzed, i.e., ingredient, in-process, environmental or finished product.

• the location of the sampling site and proximity to finished product.

NACMCF RTETesting_MainText_Final_12 July 2021 LP_cleancopyFSISwebsite.docx 32 of 63

806	 the extent to which the target organism deviated from the limit for a quantitative
807	microbiological result.
808	• the frequency with which OOS results are obtained.
809	All or some of these factors can be used to determine a level of criticality that will drive scalable
810	reactions from recleaning a piece of equipment to discarding product. For instance, the finding of a
811	pathogen in product or in close proximity to product would warrant an immediate and aggressive
812	reaction as compared to an OOS indicator level in in-process product.
813	
814	Identifying and ranking process control indicators can be challenging. The relative importance of
815	different predictors will vary with the products produced, the state of the processing facility, raw
816	ingredient sources and several other variables. Appendices A through F in this document describe six
817	commodity groups and provide a comparison of microbial limits for determining whether processes are
818	out of control depending on the product manufactured. Two examples of microbial limits drawn from
819	Appendices A and D are shown below. Additional information on establishing microbiological safety
820	criteria can be found in Scientific Criteria to Ensure Safe Food (36).
821	
822	Example 1. Appendix A - Dairy Products.
823	
824	When there is a loss of systemic process control for soft cheeses as recognized by the finding of a
825	pathogen in product or a frequent occurrence of OOS indicator organism results, a root cause analysis
826	should be performed, including looking at heat-treatment of milk, cheese vat/make procedures,
827	acidification rate, finishing table, brine tanks, block formation, aging, cutting, and packaging to
828	determine the source(s) of loss of control and to implement corrective action. The findings of the root
829	cause analysis will dictate corrective actions and whether verification testing that includes finished

830 product is indicated (Table A-1).

- Table A-1. Microbial targets, limits, and recommended actions if limits are exceeded, for soft cheeses made with pasteurized milk. Additional testing may be indicated for cheeses made with
- 832 raw milk (5, 23).

Target	Microbial Limit	Recommended Action if Limit is Exceeded	Comments		
Microorganism					
Coliforms or	<u>≤</u> 100/g	Investigate reason for exceeding limit and implement corrective	Routine testing		
Enterobacteriaceae		action; consider testing for <i>E. coli</i> (>10/g) if coliforms are detected			
S. aureus	≤100/g	If $\geq 10^4$ /g, reject lot due to potential for enterotoxin production. Due	Investigative testing if routine pH monitoring of a vat during		
to heat stability of enterotoxin,		to heat stability of enterotoxin, diverting to further processing is not	fermentation suggests acid development is slow and culture is not		
		recommended	active. Investigate, implement corrective action		
Listeria	Negative in 125 g	Reject lot. Investigate cause of contamination. Determine if other lots	Investigative testing as response to EMP that suggests likely		
monocytogenes	analytical units (5	are involved. Determine steps to prevent reoccurrence.	contamination of product or routine testing for products that can		
	x 25-g samples)		support growth of <i>L. monocytogenes</i>		
Salmonella	Negative in 375 g	Reject lot. Investigate cause of contamination. Determine if other lots	Investigative testing as response to EMP that suggests likely		
	analytical units (15	are involved. Implement corrective action to prevent reoccurrence.	contamination of product or routine testing for cheeses made with raw		
	x 25 g samples)		milk and aged for 60 days		

834 Example 2. Appendix D - Nuts (including tree nuts and peanuts) and Nut/Seed Products.

835 Microbiological limits for Ready-to-eat (RTE) chopped raw tree nuts.

836 Producers of RTE chopped raw tree nuts and some types of whole RTE nuts rely on preventive controls 837 that include sanitation controls and a supply-chain program. Control is based on the expectation that 838 processers beyond the grower are compliant with sanitation and supply-chain programs under the Preventive Controls for Human Food Rule (21 CFR Part 117)(51) and that growers that supply the raw 839 unprocessed nuts are compliant with the Produce Safety Rule (21 CFR Part 112)(50), where applicable, 840 841 and Good Agricultural Practices (GAPs) (53). Finished product testing is conducted to verify that 842 sanitation controls are in place and effective within the manufacturing facility. Product testing for 843 Salmonella and generic E. coli provides highly relevant verification data and is appropriate for the level 844 of risk associated with the raw nuts. One indication of loss of control would be the finding of a positive 845 pathogen result. When a pathogen is detected from a sample taken at the end of the production line, the recommended action is to divert for reprocessing with a kill step or destroy the lot of raw nuts 846 847 represented by the sample, as appropriate. The repeated finding of an indicator organism such as generic E. coli above a threshold level can also indicate a loss of sanitation control and the potential for 848 849 pathogen ingress into the process. However, in this case, testing provides an opportunity to adjust the process and avoid public health implications. Actions taken would follow a tiered approach based on 850 numbers and frequency of occurrence (Table D-1). 851

Table D-1. Microbial targets, limits, and recommended actions if limits are exceeded, for ready-to-eat
nuts not processed for lethality.

Target Microorganism	Microbiological Limit	Recommended Action	Comments	
		if Limit is Exceeded		
<i>E. coli</i> (generic)	<u><</u> 0.36 MPN/g	Investigate, implement	If 2 of 10 samples are	
		corrective action	≥0.36 MPN/g, follow	
			CPG Sec 570.450 <i>(48)</i>	
		Reject. Investigate and		
Listeria monocytogenes	Negative in 25 g	implement corrective		
		action		
Salmonella	Negative in two 275 g	Reject. Investigate and	Two 375 g analytical	
Sumonena	samples	implement corrective	units derived from 30 x	
		action	25 g samples	

855

Answer Q8-2. What actions should a company take if test results indicate a loss of process control? 856 857 Microbiological and chemical limits for foods for use by the United States Department of Defense to 858 assess process control and insanitary conditions were evaluated and published by a previous NACMCF 859 committee (35). The microbiological limits reported for indicator organisms in that document are not lot 860 acceptance criteria, unless there is a regulatory limit associated with that value, such as limits for 861 coliforms in milk or generic E. coli in nuts (see NACMCF-DOD Appendices (35). The 2018 NACMCF-DOD 862 document was developed for inspectors or auditors to evaluate whether a food was produced under 863 sanitary conditions without having full knowledge of the processing conditions. However, the target 864 microorganisms and limits included both product and environmental monitoring that would be useful to 865 the manufacturer that their process is in control. Therefore, both the NACMCF-DOD guidance and this document provide guidance to evaluate sanitary conditions and process control for foods, including 866 867 appropriate target microorganisms and limits in foods, as well as recommended actions to be taken if 868 the limits are exceeded. In many instances, actions include investigating to determine a root cause, 869 implementing corrective and preventive actions, and conducting follow-up sampling and testing to 870 determine if the corrective and preventive actions have been effective. These actions were categorized as "Investigate" or "Implement Corrective Actions." The 2018 NACMCF-DOD document indicated that 871 872 investigative and corrective action procedures would likely be unique to each situation. Given the 873 scalable approach recommended for determining loss of control, actions taken would also depend on the type of hazard created by a loss of control. 874

As an example, samples taken of a low water activity product (e.g., a cold pressed bar) at several inprocess points during production are found to be out of specification for coliforms; however, levels decrease over the course of the process run. If the process had been wet cleaned prior to start-up, the investigation might focus on water left behind due to inadequate drying and outgrowth on the equipment and/or a review of coliform levels in ingredients. The fact that the coliform levels decreased over time would appear to support elevated levels due to outgrowth at start-up that were removed as the process progressed. The company could take the following actions:

Review sanitation activities and implement corrective actions if found inappropriate or
 inadequate (e.g., modify cleaning and sanitizing procedures, revise sanitation verification
 activities).

885	2. Review coliform levels in ingredients and implement corrective actions if found to be
886	elevated beyond the ingredient specification (e.g., address issue with supplier, use alternative
887	supplier).
888	3. Consider whether pathogen testing of finished product could be appropriate. (As an
889	indicator of post-process contamination, high levels of coliforms might also indicate a pathway
890	for pathogen ingress).
891	4. Decide on product disposition.
892	
893	In another example, samples are taken at the end of the production line and tested for a target
894	pathogen. If the pathogen is detected, this represents a serious loss of process control that warrants
895	stopping the process line until a root analysis is completed, the hazard is mitigated, and the hazard is
896	assured to be eradicated. The root cause analysis could include a review of all processing records,
897	questioning production workers about whether there were any unusual occurrences during processing,
898	testing ingredients for the pathogen, environmental sampling, additional testing of product from
899	throughout the production, etc. Specific corrective actions depend on the findings of the root cause
900	analysis. Unless the product can be reprocessed using a validated process, product destruction is
901	indicated. An essential activity is to assess whether contaminated product has left the company's
902	control (public health risk) and take the necessary actions to recall the product.
903	
904	Answer Q8-3. When verification testing indicates loss of process control, to what extent should
905	verification testing be increased, how far upstream and downstream should it go, and when and how
906	should it be scaled back?
907	The number of in-process, finished product, or environmental samples to take and test on a routine
908	basis is determined by a review of the process and product, and the information derived from the
909	analysis. In general, taking more samples increases the probability of pathogen detection; and larger
910	numbers of samples taken for pathogens can increase the confidence of detecting pathogens present at
911	a low prevalence. Analytical unit weights for testing should be a minimum of 25 grams; for pathogen
912	testing, the analytical unit is usually a composite weight such as 375 grams (15 X 25 gram samples to
913	result in a 375 gram analytical unit) (3) When there has been a loss of control, the number of samples,
914	the size of the sample, and the frequency of verification testing can all increase.

915	If a root cause is not readily apparent, investigational testing should span the entire process, including
916	ingredient, in-process product and a sampling of finished product produced over contiguous runs or
917	produced during a time frame bracketed by breaks in the process for full sanitation ("clean breaks").
918	The intent is to find ingress points and establish a timeframe for the contamination event.
919	When a root cause investigation and corrective/preventive activities are completed, the decision to
920	resume normal production is based, in large part, on microbiological testing that verifies control has
921	been restored. Predetermined testing strategies (frequency and numbers of samples) for a process in
922	control (standard "surveillance" level of testing), a process trending away from control (increased
923	"heightened" level of testing) and a process that is out of control (investigative testing) should be part of
924	a microbiological testing program. The increased number of samples and the frequency with which they
925	are taken to initially investigate the root cause can be scaled back in a stepwise manner, first to a
926	heightened level of microbiological testing and, eventually, to fewer samples, smaller sample sizes and
927	fewer sample sites consistent with surveillance testing used with a process in a steady state of control.
928	This step-down approach requires a commitment to testing at each step for a defined amount of time to
929	collect sufficient data that demonstrates the process is moving toward a consistent state of control.

38 of 63

930 LIST OF TABLES

931 **Table 1. Comparison of responses to Charge Question 1 by commodity.** What principles and criteria should a company apply in determining the need for and in designing an effective microbial

932 testing program to verify that processes are effectively controlling microbial pathogens?

	Dairy	Grain-based products	Meals & Entrees	Nuts, Seeds &	Fruits & Vegetables	Spices & Herbs		
				products				
1.1 Have pathogens been associated	All raw commodities in the	All raw commodities in these groups have been associated with pathogens and/or foodborne illness.						
with the food or its ingredients and	Post-lethality contamination	Post-lethality contamination and long-term survival of low infectious dose pathogens, such as Salmonella in low moisture foods (spices, dry dairy, grains,						
whether the food has been involved in	nuts/seeds) are problemat	ic; presence/growth of L. mon	ocytogenes in perishable	e refrigerated foods	(RTE meals, high moisture	cheeses, cut fruits/vegetables)		
foodborne illnesses?	has occurred.							
	Other pathogens such as Shiga-toxin producing <i>E. coli</i> have been associated with leafy greens and cheeses made with unpasteurized milk.							
1.2 Is it likely that ingredients are	The likelihood that ingredients are contaminated depends on whether they have previously received a robust lethality process (kill step). For example, foods							
contaminated, given the nature of the	contaminated, given the nature of the with cooked components or have lower probability of being contaminated due to the lethality process but rely on supplier programs to prevent post-lethalit					rams to prevent post-lethality		
ingredient and the robustness of the	contamination. RTE meals/salads with fresh produce depend on supplier control programs to prevent contamination being introduced into the ingredient and							
supplier programs? hence the final product.								
1.3 Are the processing control	This is product dependent							
procedures robust.								

1.3.a. Is there a kill step? Other	Except for cheese made	Most bakery products have	Some foods are	Roasted or	Antimicrobials in	Depending on the intended use.
microbial reduction step? (Not having	with raw milk, milk is	a kill step (baking);	fully cooked,	otherwise treated	produce washes are	Some will be treated with gas,
a kill/microbial reduction step	pasteurized for use in	however, process should be	including a cook-in-	provide microbial	typically used to	steam, radiation, etc.; others are
increases risk. Kill step in the package	dairy products.	controlled to prevent	bag. However,	reduction. When	prevent cross	not processed for lethality
mitigates the risk and may eliminate		growth of bacteria such as	some are	this is not needed,	contamination in the	
the need for finished product testing.)		S. aureus and B. cereus that	combination	suppliers should	wash water and not as	
		produce heat-stable	products with raw	comply with the	a microbial reduction	
		enterotoxins.	ingredients (e.g.,	Produce Safety	step on the product	
		Other grain-based products	sandwiches	Rule (21 CFR Part	surface. Suppliers of	
		such as cold-pressed bars	containing raw	112) where	fruits and vegetables	
		have no kill step for the	produce).	applicable, or	for fresh-cut or drying	
		final product		GAPs.	should comply with	
					the Produce Safety	
					Rule (21 CFR part 112)	
					where applicable, or	
					GAPs. Some drying	
					processes may have	

_							
						sufficient heat to	
						inactivate pathogens.	
	1.3.b. Does formulation result in a	Cultures used in dairy	Grains and grain-based	Most RTE meals are	Dried nuts and	Some citrus fruits may	Dried and fresh spices and herbs
	reduction of microorganisms (based	products produce	foods typically do not have	not formulated to	seeds are not	have sufficiently low	do not have formulations that
	on the characteristics of the food, e.g.,	sufficient lactic acid (e.g.,	formulations that rapidly	inactivate	formulated to	pH to inactivate	inactivate pathogens
	pH, acid type, aw)?	pH <4.6) that bacterial	inactivate pathogens	pathogens	inactivate	pathogens, but	
		pathogens will be slowly			pathogens; some	lethality will be slow;	
		inactivated during			slow inactivation	fresh produce is	
		storage; hard cheeses			of pathogens can	typically not	
		rely on combination of			occur over time in	formulated to ensure	
		acidity and reduced			low a _w foods, but	lethality	
		moisture/a _w and			survival may be		
		extended aging as a			months		
		gradual pathogen					
		reduction.					
		1					

1.4 . Is there a potential for	Except for foods that are h	ot-filled, filled within a closed s	ystem, or which receiv	e an in-package letha	lity step, all commodities	have the risk of contamination	
recontamination from the handling or	from handling or from the environment.						
the environment?							
1.5. Does the product support survival	Variable; all products	Foods with low a_w can allow	Foods in this	Pathogens can	Pathogens will survive	Dried spices and herbs are low	
or growth?	within this category will	pathogen survival but do	category are	survive for	on fresh cut	a_{w} that allow survival but do not	
	support survival to a	not support growth. Other	typically within pH	extended periods	fruits/vegetables;	support growth.	
	degree over shelf life, but	foods with higher a_w	and a_{w} ranges that	in dry	growth is likely to be		
	populations of pathogens	(>0.88) and pH >4.6 may	support growth	nuts/seeds/produ	slow if refrigerated.		
	may decrease over time,	support growth and require		cts. Nut-milks	Pathogens may		
	such as during aging of	temperature-time control		may support	survive on dried fruits		
	hard cheese or exposure	for safety.		growth if not	and vegetables but		
	to high acid content in			properly	are unlikely to grow		
	cultured dairy products.			refrigerated.	due to pH and low		
	Growth largely depends				water activity.		
	on product pH, a _w ,						
	presence of antimicrobial						
	ingredients (e.g.,						

	potassium sorbate), and					
	presence of competitive					
	microbiota (e.g., starter					
	cultures), as well as					
	storage conditions					
1.6. Is this product intended specifically	In most instances the produ	uct is being made for the gener	al population but may	be consumed by indiv	viduals in higher risk popu	ulations. Exceptions are milk
for higher risk population?	powders used for infant for	rmula and cereals that are inter	nded for infants.			
1.7. What is the shelf life of the	Butter: 3-9 months	Filled pastry, soft cookies	Variable.	Nuts no lethal	Fresh cut fruits: 1	Spices NOT processed for
product?	Dried: months-years	and bread 1-3 weeks at	RTE Salad: 1-2	process: 6 months	week	lethality: 1-2 years
	Cheese Hard: several	ambient temp.	weeks	ambient temp., 1	Fresh cut vegetables:	Spices processed for lethality:
	years	Frozen products (e.g.,	Sandwich: 1-2	year refrigerated,	1 week	1-2 years
	Cheese fresh: 60-90 days	waffles or filled pastry) can	days. Several	1-2 years frozen.	Dried: 1- 2 years	Dried chopped herbs: 6-9
	Cultured pH<4.8: 60-90	be 18 months.	months frozen.	Nuts processed		months
	days	Dried products (e.g.,	Several days	for lethality:		
	Cultured pH 4.8-5.4: 60-	cereals and cold pressed	thawed.	Months to years		
	90 days	bar; hard cookies) 18	Heat & Eat Entrée:	Nut products:		
		months.	Several days	Almond milk 2-3		

	Frozen desserts: months		refrigerated.	months HTST, 8 -		
	- years		Several months	10 months UHT.		
	Fluid milk: HTST		frozen	Nut cheese 6		
	pasteurized up to 3			months.		
	weeks			Nut and seed		
				butters: 1 year		
1.8. Will consumer handling and use	Variable depending on	Variable depending on the	Variable depending	Unlikely that	Fresh cut fruits and	Dried spices and herbs are
increase or decrease risk of pathogen	the product. Butter:	product.	on the product.	consumer	vegetables: Increase	typically shelf-stable due to low
survival, growth, or toxin production?	unlikely that storage	Items with high a_w	RTE Salad: L.	handling or	risk if improperly	a _w . No changes to risk if
	conditions will alter risks	components, e.g., custard	monocytogenes	storage will	handled or	handling or storage conditions
	associated with salted	filling, can support growth	can grow @	increase risk	temperature abused.	at the retail or consumer level
	butter. <i>S. aureus</i> may	of pathogens such as <i>L</i> .	refrigeration if pH	unless condensate	Dried: Bulk containers	are not as intended.
	grow in unsalted or	monocytogenes or S. aureus.	>4.4. <i>B. cereus</i> can	is allowed to form	at retail add risk for	
	whipped butter if	If frozen products are	grow in cooked rice	on the product to	cross-contamination	
	unrefrigerated.	thawed and held extended	if not refrigerated.	increase the a_w .	but due to low a _w , dry	
	Dried: Unlikely that	periods at refrigeration or	Consumers can		storage outside chilled	
	storage will affect risk for	ambient temperatures	hold @ room		storage or beyond	

NACMCF RTETesting_MainText_Final_12 July 2021 LP_cleancopyFSISwebsite.docx

dried product. If	pathogens may grow.	temper for several	use-by date will not
rehydrated and	Temperature abuse or	hours.	increase food safety
temperature abused,	extended refrigerated	Sandwich: Holding	risk.
Cronobacter and	storage of rehydrated infant	refrigerated	
Salmonella can grow.	cereal may allow growth of	sandwich for	
Cheese Hard:	pathogens	several days can	
Combinations of acidity,		increase risk of <i>L</i> .	
a _w and residual		monocytogenes	
competitive starter		growth.	
culture will inhibit		Heat & Eat Entrée:	
pathogen growth if		Low risk. Fully	
temperature abused.		cooked. Potential	
Cheese fresh: Storage		for pathogen	
>3C or extended storage		growth if re-	
will promote growth of <i>L</i> .		contaminated and	
monocytogenes.		temp. abused by	
		consumer.	

1			
Cultured pH<4.8: no			
changes in risk.			
Cultured pH 4.8-5.4:			
potential for growth of <i>L</i> .			
monocytogenes if			
temperature abused,			
particularly if not			
formulated with			
preservatives.			
Frozen desserts: No			
change in risk as long as			
product remains frozen			
Fluid milk: not likely.			
Spoilage microorganisms			
likely to out compete			
pathogens.			

933 **Table 2. Comparison of responses to Charge Question 6 by commodity.** Generally, microbial testing by a company to verify process control is conducted on "finished product." Are there

934 situations in which testing at sites other than at the end of the process can achieve the goal of verifying the adequacy of control of microbial hazards? Describe the situations and the testing*

935 *that would be appropriate.*

Doiny	Grain based products	Maals and Entrops	Nuts, Seeds & Nut/Seed	Fruits and Vagatables	Chicas and Harbs
Dairy	Gram-based products	ivieais and Entrees	products	Fruits and vegetables	spices and neros
Butter, Margarine:	RTE, baked, refrigerated or	RTE Deli salads:	RTE nuts not processed for	RTE fresh-cut fruits, and RTE	RTE spices and spice blends,
Yes. Testing aerobic colony	time-temperature controlled	Yes. Monitoring and	lethality:	fresh-cut vegetables:	not processed for lethality:
count and	for safety (TCS):	verification of processing	No.	Yes. Pre-harvest testing or	No.
Enterobacteriaceae or	Yes. Testing of a custard	steps such as the cook step		activities associated with	
coliforms can be done during	filling prior to being filled into	for certain components of	RTE nuts and seeds processed	supplier verification, assays	RTE spices and spice blends,
production, as well as for	the pastry may be more	deli salads to ensure	<u>for lethality</u> ,	and/or electronic monitoring	processed for lethality:
environmental testing.	appropriate than	validated process controls are	and	of wash water system or at	Yes. Consider quantitative
	enumerating S. aureus in the	appropriately implemented,	RTE nut and seed products	receiving of the processing	Enterobacteriaceae testing of
<u>Cheese, hard</u> :	finished product.	combined with testing of the	processed for lethality,	facility may be considered as	the raw, unprocessed spices
and	Enumeration of toxin	ingredients of concern (e.g.,	and	alternative to finished	or herbs.
	producers S. aureus and/or B.	those that have not received		product testing.	

Dairy	Grain-based products	Meals and Entrees	Nuts, Seeds & Nut/Seed products	Fruits and Vegetables	Spices and Herbs
Cheese, fresh, soft, soft-	cereus in raw waffle batter	a lethality treatment) could	RTE nut/seed butters not		Dried, chopped herbs:
ripened, semi-soft, or veined:	may be necessary, since	be an alternative to finished	processed for lethality	RTE dried/dehydrated fruits:	No.
Yes. Monitoring the pH of	testing of the finished frozen	product testing.	beyond initial nut processing:	Pathogen testing (pre-harvest	
curd can detect slow	waffle would not be			or testing at receiving) may	
fermentation and testing for	appropriate due to the kill	Sandwiches:	No. For processes that are	be necessary depending on	
S. aureus (<10 ⁴ CFU/g) may	step in baking the waffle.	Yes. Microbial testing and	not enclosed, finished	the commodity, if there is an	
be relevant if acidification		COAs from suppliers (or	product testing is	emerging issue, a risk	
proceeds slowly. Testing for	RTE, baked, shelf stable or	periodic testing of	recommended along with	associated with the	
indicator organisms (e.g.,	<u>non-TCS</u> : No.	ingredients by the receiving	additional points of	farming or harvesting system	
molds, yeasts,		facility) may be appropriate	verification testing including:	(i.e., absence of water	
Enterobacteriaceae, or		in some circumstances, but	• Environmental monitoring.	treatment for overhead	
Listeria-like microorganisms)		may not be warranted (or	 Inbound raw material 	irrigation) or for a new	
in brine or in curd for <i>E. coli</i>		may be limited) if a firm can	testing – depends on	supplier or change of	
(<100 CFU/g) in cheese made		verify a supplier has	processed state of	supplier. Lot acceptance	

Dairy	Grain-based products	Meals and Entrees	Nuts, Seeds & Nut/Seed	Fruits and Vegetables	Spices and Herbs
			products		
from heat-treated milk may	RTE Cereals:	adequate process controls	ingredients and COA data.	testing could be considered,	
be useful to verify process	No. For ingredients added	and control of environmental	Lot-by-lot testing if supplier	as the shelf-life allows for this	
control and hygiene	post-lethality, COAs should	contamination verified with	is deficient in pathogen	type of testing to be applied.	
conditions.	be received from suppliers	an EMP.	mitigation interventions	Additional points of	
	and supplier control		and hazards are not	verification may not	
<u>Cultured, pH < 4.8</u> :	programs verified.	"Heat and Eat" Entrées and	controlled by a process.	eliminate the need for	
and		Meals: Yes. Monitoring of	 Sanitation/hygiene 	finished product testing but	
<u>Cultured, pH > 4.8 and <5.4</u> :	RTE, cold-pressed bars:	the process controls that	verification testing.	are important including	
Yes. pH testing during	No	have been validated for		pathogen environmental	
fermentation to monitor acid		products that are fully		monitoring and	
production should be done		cooked provides more		sanitation/hygiene	
routinely to ensure adequate		assurance of safety than		verification testing.	
acid production to control		microbiological testing of			
microbial hazards. Testing		finished product. However, if			

Dairy	Grain-based products	Meals and Entrees	Nuts, Seeds & Nut/Seed products	Fruits and Vegetables	Spices and Herbs
for indicator organisms, and		the food is exposed to the			
environmental monitoring		environment after the			
programs are verification of		process, as with egg rolls and			
process control and		baked pot pies, an EMP is			
sanitation.		critical.			
Dried products or					
ingredients:					
Yes. Sampling plans for					
APC/SPC, coliforms,					
Salmonella, or					
Enterobacteriaceae should					
include representative					
samples taken after the					
drying step up to the filling					

Dairy	Grain-based products	Meals and Entrees	Nuts, Seeds & Nut/Seed products	Fruits and Vegetables	Spices and Herbs
operation. Sampling points					
are sifter tailings from after					
dryer/after cooler or from					
tipping stations of					
intermediate products and					
filling machines.					
<u>Frozen desserts</u> :					
Yes. Samples for coliforms or					
APC are typically taken from					
the mixing and maturation					
tanks, at the filler or after					
hardening tunnels. Particular					
attention needs to be paid to					

Dairy	Grain-based products	Meals and Entrees	Nuts, Seeds & Nut/Seed products	Fruits and Vegetables	Spices and Herbs
build-up of residues or					
condensation spots where					
growth may occur.					
Milk and Milk products					
(fluid):					
No.					

936 **Table 3. Charge Question 7.** What impact does environmental monitoring have on frequency and extent of product testing verification activities by companies?

			Nuts, Seeds & Nut/Seed	-	
Dairy	Grain-based products	Meals and Entrees	products	Fruits and Vegetables	Spices and Herbs
For products that utilize	For RTE baked items (TCS or	For RTE deli salads,	RTE nuts processed and not	For fresh-cut, RTE fruits and	For spices/herbs not treated
pasteurized milk and have	non-TCS) and RTE cereals,	sandwiches and meals with	processed for lethality require	vegetables, a robust EMP	for lethality, EMP does not
product composition (pH, a _w ,	pathogens would most likely	short shelf life, finished	EMP but this will not diminish	should reduce the need for	impact product testing
competitive microbiota) such	come from environmental	product testing for pathogens	the need for finished product	finished product testing, since	because untreated spice may
that growth is inhibited,	recontamination to	is impractical. A robust EMP	testing.	the main pathogens of	be the source of
environmental monitoring for	packaging. Therefore, ongoing	is needed to verify sanitation		concern are L.	contamination.
Listeria species will identify	environmental monitoring to	controls and to identify	EMP for RTE nut products	monocytogenes or Salmonella	
the potential for product	verify sanitation controls	potential for cross	processed for lethality in	(depending on commodity),	a) After treatment, spices and
contamination and will	provides the most relevant	contamination.	closed systems (e.g., almond	which can come from	herbs are usually in some
reduce the need to test	information on product		"milk" beverages) will inform	environmental	form of container, limiting
product.	safety. A robust EMP should	For heat-and-eat entrees and	sanitation efficacy as final	contamination. Furthermore,	environmental exposure and
	reduce the need for finished	meals, EMP is a key factor in	product testing may not be	the short shelf life of these	the need for environmental
	product testing.		necessary.	foods may make pathogen	monitoring.

Dairy	Grain-based products	Meals and Entrees	Nuts, Seeds & Nut/Seed	Fruits and Vegetables	Spices and Herbs
Dany			products	Truits and vegetables	Spices and neros
Products that have potential		not conducting finished		testing of the finished	b) If there is an opportunity
for post-process	For RTE grain-based products	product testing.	For other nut products where	product impractical.	for environmental exposure
contamination and rely on	without a lethality step (such		processes are not enclosed, a		of the spice or herb after the
storage temperature to	as cold-pressed bars),		robust environmental	For RTE dried/dehydrate	application of the
inhibit pathogen growth (such	environmental monitoring		monitoring program should	fruits/vegetables,	microbiological intervention,
as soft cheeses with high pH)	and supplier control for		be present or deployed	environmental monitoring for	then an environmental
may require both a robust	ingredients can reduce		targeting the post-lethality	pathogens of concern (likely	monitoring program may be
EMP and include finished	frequency of finished product		areas. Application of EMP,	Salmonella and Listeria) is	appropriate.
product testing. The results of	testing.		however does not replace	warranted if drying process is	c) An environmental
the EMP can impact the			finished product verification	conducted in a closed	monitoring program may
frequency and number of			testing.	environment and aided by	result in a short term
product samples. Frozen				equipment that can facilitate	movement to investigational
dessert may still require			For nut/seed butters that are	cross-contamination.	sampling, when an event in
finished product testing			not processed for lethality		the environmental program
because of the potential of			beyond initial nut/seed,	However, if the process is an	

Doiny	Grain based products	Mools and Entrops	Nuts, Seeds & Nut/Seed	Equits and Vagatables	Spisos and Harbs
Dairy	Gram-based products	wears and Entrees	products	Fruits and vegetables	spices and neros
growth if the product were			environmental testing and	outdoor process such as "sun-	indicates a potential for
stored in unfrozen state.			supply chain verification	drying" then all reasonable	contamination.
			activities can reduce the need	precautions need to be	
Dairy powders: Since the			for finished product testing.	followed to prevent	
major cause of presence of				contamination. Lot	
Salmonella or increased levels				acceptance testing may be	
of Enterobacteriaceae in				appropriate because of the	
finished products is				limitations in deploying an	
recontamination from the				environmental monitoring	
processing environment,				program and sanitation	
sampling and testing of				controls.	
environmental samples plays					
a key role in verifying the					
effectiveness of the					
preventive measures. It					

NACMCF RTETesting_MainText_Final_12 July 2021 LP_cleancopyFSISwebsite.docx

			Nuts, Seeds & Nut/Seed		
Dairy	Grain-based products	Meals and Entrees	products	Fruits and Vegetables	Spices and Herbs
should be noted that testing					
for Enterobacteriaceae alone					
is not suitable since even low					
levels do not necessarily					
guarantee the absence of the					
pathogen. Frequency and					
extent of product testing					
should be increased if the					
results from environmental					
monitoring show the					
presence of Salmonella, or					
increased levels of EB, or if					
product is intended for					
immunocompromised					
individuals.					

Dairy	Grain-based products	Meals and Entrees	Nuts, Seeds & Nut/Seed products	Fruits and Vegetables	Spices and Herbs
Finished product testing					
(micro) of fluid milk is not					
necessary if records are kept					
verifying that pasteurization					
was effective. Typically, fluid					
milk is considered not to be					
exposed to the environment					
during filling. However, firms					
usually identify/implement					
sanitation controls and					
perform environmental					
monitoring					

938 **REFERENCES**

- 939 1. Ahamad, N., and E. H. Marth. 1989. Behavior of *Listeria monocytogenes* at 7, 13, 21, and 35-
- 940 degrees-C in tryptose broth acidified with acetic, citric, or lactic-acid. J. Food Prot. 52:688-695.
- 941 2. American Spice Trade Association. 2017. Clean, Safe Spices: Guidance from the Amercian Spice
- 942 Trade Association. https://www.astaspice.org/food-safety-technical-guidance/best-practices-and-
- 943 guidance/clean-safe-spices-guidance-document/, Accessed April 3, 2021.
- 944 3. Andrews, W. H., and T. Hammack. 2003. BAM Chapter 1, Food Sampling and Preparation of
- 945 Sample Homogenate. In, FDA Bacteriological Analytical Manual, https://www.fda.gov/food/laboratory-
- 946 methods-food/bam-chapter-1-food-samplingpreparation-sample-homogenate.
- 947 4. Anthon, G. E., and D. M. Barrett. 2002. Kinetic parameters for the thermal inactivation of
- 948 quality-related enzymes in carrots and potatoes. J. Agric. Food. Chem. 50:4119-4125.
- 949 5. Artisans Dairy Producers Food Safety Initiative. 2019. Food Safety Systems Guide to Raw Milk
- 950 Cheese Production. https://www.usdairy.com/getmedia/a87ecbc3-4fcc-4ff2-bb3f-
- 951 <u>e0b848b167bb/food_safety_systems_guide_to_cheese_production_final_2019.pdf.pdf</u>, Accessed 12
- 952 December 2020.
- 953 6. Breidt, F., E. L. Andress, and I. B. 2018. Recommendations for designing and conducting cold-fill
- hold challenge studies for acidified food products *J. Food Prot.* 38:322-328.
- 955 7. Breidt Jr, F., K. Kay, J. Cook, J. Osborne, B. Ingham, and F. Arritt. 2013. Determination of 5-log
- 956 reduction times for Escherichia coli O157: H7, Salmonella enterica, or Listeria monocytogenes in acidified
- 957 foods with pH 3.5 or 3.8. J. Food Prot. 76:1245-1249.
- 958 8. Buchanan, R., and D. W. Schaffner. 2015. FSMA: Testing as a tool for verifying preventive
- 959 controls. *Food Prot. Trends*. 35:228-237.

- 960 9. Buchanan, R. L., M. H. Golden, and R. C. Whiting. 1993. Differentiation of the effects of pH and
- 961 lactic or acetic-acid concentration on the kinetics of *Listeria monocytogenes* inactivation. *J. Food Prot.*
- 962 56:474-&.
- 10. Busta, F. F., T. V. Suslow, M. E. Parish, L. R. Beuchat, J. M. Farber, E. H. Garrett, and L. J. Harris.
- 964 2006. The use of indicators and surrogate microorganisms for the evaluation of pathogens in fresh and
- 965 fresh-cut produce. Compr Rev Food Sci F. 2:179-185.
- 966 11. California Leafy Green Products Handler Marketing Agreement (LGMA). 2020. Food Safety
- 967 Practices In, https://lgmatech.com/wp-content/uploads/2020/08/CA-LGMA-Metrics-August-
- 968 <u>2020_Final_Clean_9-18-20.pdf</u>.
- 969 12. Chen, Y. H., V. N. Scott, T. A. Freier, J. Kuehm, M. Moorman, J. Meyer, T. Morille-Hinds, L. Post, L.
- 970 Smoot, S. Hood, J. Shebuski, and J. Banks. 2009. Control of Salmonella in low-moisture foods II: Hygiene
- practices to minimize *Salmonella* contamination and growth. *Food Prot. Trends*. 29:435-445.
- 13. Chen, Y. H., V. N. Scott, T. A. Freier, J. Kuehm, M. Moorman, J. Meyer, T. Morille-Hinds, L. Post, L.
- 973 Smoot, S. Hood, J. Shebuski, and J. Banks. 2009. Control of *Salmonella* in low-moisture foods III: Process
- validation and environmental monitoring. *Food Prot. Trends*. 29:493-508.
- 975 14. Craven, H. M., M. J. Eyles, and J. A. Davey. 2003. Enteric indicator organisms in foods. *In* A.D.
- 976 Hocking (ed.), Foodborne Microorganisms of Public Health Significance, 6th ed. Australian Institute of
- 977 Food Science and Technology Inc., Tempe, Australia.
- 978 15. D'Amico, D. J., M. J. Druart, and C. W. Donnelly. 2008. 60-day aging requirement does not
- 979 ensure safety of surface-mold-ripened soft cheeses manufactured from raw or pasteurized milk when
- 980 Listeria monocytogenes is introduced as a postprocessing contaminant. J. Food Prot. 71:1563-1571.
- 981 16. D'Amico, D. J., M. J. Druart, and C. W. Donnelly. 2010. Behavior of *Escherichia coli* O157:H7
- 982 during the manufacture and aging of Gouda and stirred-curd Cheddar cheeses manufactured from raw
- 983 milk. J. Food Prot. 73:2217-2224.

- 984 17. Farakos, S. M. S., R. Pouillot, and S. E. Keller. 2017. *Salmonella* survival kinetics on pecans,
- hazelnuts, and pine nuts at various water activities and temperatures. J. Food Prot. 80:879-885.
- 986 18. Glass, K. A., and J. R. Bishop. 2007. Factors that contribute to the microbial safety of commercial
- 987 yogurt. Food Protection Trends. 27:380-388.
- 988 19. Glass, K. A., L. M. McDonnell, R. C. Rassel, and K. L. Zierke. 2007. Effect of cooling rate on
- 989 pathogen survival in post-process contaminated yogurt. *Food Protection Trends*. 27:16-21.
- 990 20. Grocery Manufacturers Association. 2014. Listeria monocytogenes guidance on environmental
- 991 monitoring and corrective actions in at-risk foods.
- 992 https://ucfoodsafety.ucdavis.edu/sites/g/files/dgvnsk7366/files/inline-files/208833.pdf, Accessed April
- 993 12, 2021.
- 994 21. Grocery Manufacturers Association (GMA). 2009. Control of Salmonella in Low-Moisture
- 995 Foods.<u>http://www.gmaonline.org/downloads/technical-guidance-and-</u>
- 996 tools/SalmonellaControlGuidance.pdf.
- 997 22. Grocery Manufacturers Association (GMA). 2010. Industry Handbook for Safety Processing of
- 998 Nuts. https://ucfoodsafety.ucdavis.edu/sites/g/files/dgvnsk7366/files/inline-files/227728.pdf, Accessed
- 999 April 29, 2021.
- 1000 23. Health Canada, and U. S. Department of Health and Human Services. 2015. Joint FDA / Health
- 1001 Canada Quantitative Assessment of the Risk of Listeriosis from Soft-Ripened Cheese Consumption in the
- 1002 United States and Canada. In, <u>https://www.fda.gov/media/90488/download</u>.
- 1003 24. Ibrahim, G. 1981. A simple sensitive method for determining staphylococcal thermonuclease in
- 1004 cheese. J. Appl Bacteriol. 51:307-312.
- 1005 25. Ingham, G. A., M. Pan, F. Ranelli, and B. H. Ingham. 2017. Efficacy of a hold-time at 10 degrees C
- 1006 for achieving a 5-log reduction of *Escherichia coli* O157: H7, *Salmonella enterica*, and *Listeria*
- 1007 *monocytogenes* in prepared mustard. *Food Prot. Trends.* 37:8-15.

- 1008 26. Innovation Center for U.S. Dairy. 2015. Control of *Listeria monocytogenes*: Guidance for the U.S.
- 1009 Dairy Industry. https://www.usdairy.com/getmedia/aee7f5c2-b462-4f4f-a99d-
- 1010 870f53cb2ddc/control%20of%20listeria%20monocytogenes%20guidance%20for%20the%20us%20dairy
- 1011 <u>%20industry.pdf.pdf</u>, August 12, 2020.
- 1012 27. Innovation Center for U.S. Dairy. 2019. Controlling Pathogens In Dairy Processing Environments:
- 1013 Guidance for the U.S. Dairy Industry https://www.usdairy.com/getmedia/cdafaa12-e765-4432-820c-
- 1014 de5240e6c7ff/pathogen%20guidance_final.pdf.pdf, December 12, 2020.
- 1015 28. Institute of Food Technologists. 2000. Special supplement: Kinetics of microbial inactivation for
- 1016 alternative food processing technologies IFT's response to task order #1, US Food and Drug
- 1017 Administration: How to quantify the destruction kinetics of alternative processing technologies. J. Food
- 1018 Sci. 65:4-108.
- 1019 29. Institute of Medicine. 2009. Review of Use of Process Control Indicators in the FSIS Public Health
- 1020 Risk-Based Inspection System: Letter Report. The National Academies Press, Washington, DC.
- 1021 30. International Commission for the Microbiological Specifications for Foods (ICMSF). 2011.
- 1022 Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance. Springer,
- 1023 New York.
- 1024 31. International Commission on Microbiological Specifications for Foods (ICMSF). 2018.
- 1025 Microorganisms in Foods 7: Microbiological Testing in Food Safety Management. 2nd edition. Springer
- 1026 International Publishing, New York.
- 1027 32. Kornacki, J. I., J. B. Gurtler, and B. A. Stawick. 2013. Ch. 9 Enterobacteriaceae, Coliforms, and
- 1028 Escherichia coli as Quality and Safety Indicators. In, Compendium of Methods for the Microbiological
- 1029 Examination of Foods, 5th ed. APHA Press, an imprint of American Public Health Association,
- 1030 https://doi.org/10.2105/MBEF.0222.

1031 33. Lobo, A., C. Zuniga, R. W. Worobo, O. I. Padilla-Zakour, and J. Usaga. 2019. Fate of spoilage and

- 1032 pathogenic microorganisms in acidified cold-filled hot pepper sauces. J. Food Prot. 82:1736-1743.
- 1033 34. Minor, T. E., and E. H. Marth. 1972. Fate of *Staphylococcus aureus* in cultured buttermilk, sour
- 1034 cream, and yogurt during storage. *J Milk Food Technol*. 35:302-306.
- 1035 35. National Advisory Committee for Microbiological Criteria for Foods. 2018. Response to
- 1036 questions posed by the Department of Defense regarding microbiological criteria as indicators of
- 1037 process control or insanitary conditions. J. Food Prot. 81:115-141.
- 1038 36. National Research Council. 2009. Scientific Criteria to Ensure Safe Food. The National Academies
 1039 Press, Washington, DC.
- 1040 37. Peng, J., J. Tang, D. M. Barrett, S. S. Sablani, N. Anderson, and J. R. Powers. 2017. Thermal
- 1041 pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on
- 1042 quality. Crit Rev Food Sci Nutr. 57:2970-2995.
- 1043 38. Rankin, S. A., A. Christiansen, W. Lee, D. S. Banavara, and A. Lopez-Hernandez. 2010. Invited
- 1044 review: The application of alkaline phosphatase assays for the validation of milk product pasteurization.
- 1045 *J. Dairy Sci.* 93:5538-5551.
- 1046 39. Salazar, J. K., V. Natarajan, D. Stewart, Q. Suehr, T. Mhetras, L. J. Gonsalves, and M. L. Tortorello.
- 1047 2019. Survival kinetics of Listeria monocytogenes on chickpeas, sesame seeds, pine nuts, and black
- 1048 pepper as affected by relative humidity storage conditions. *Plos One*. 14:10.
- 1049 40. Sanyal, B., J. J. Ahn, J. H. Maeng, H. K. Kyung, H. K. Lim, A. Sharma, and J. H. Kwon. 2014. An
- 1050 improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy. J.
- 1051 *Food Sci.* 79:C1656-C1664.
- 1052 41. Scott, V. N., Y. U. H. Chen, T. A. Freier, J. Kuehm, M. Moorman, J. Meyer, T. Morille-Hinds, L.
- 1053 Post, L. Smoot, S. Hood, J. Shebuski, and J. Banks. 2009. Control of Salmonella in low-moisture foods I:
- 1054 Minimizing entry of *Salmonella* into a processing facility. *Food Prot. Trends.* 29:342-353.

- 1055 42. Smittle, R. 2000. Microbiological safety of mayonnaise, salad dressings, and sauces produced in
 1056 the United States: a review. *J Food Prot.* 63:1144-53.
- 1057 43. Thevaraja, M., K. Govindaraju, and M. Bebbington. 2021. Modelling the effect of sampling
- 1058 methods on detection tests for powdered products. *Food Control*. 120:107512.
- 1059 44. Thiyagarajan, S., and P. Vasanth. 2011. *Staphylococcus aureus* thermonuclease detection is a
- 1060 tool to investigate enterotoxin production in raw and processed food products. *Indian J. Appl. Microbiol.*
- 1061 . 13:1-9.
- 1062 45. U. S. Department of Health and Human Services. 2019. Grade "A" Pasteurized Milk Ordinance,
- 1063 Including Provisions from the Grade "A" Condensed and Dry Milk Products and Condensed and Dry
- 1064 Whey--Supplement I to the Grade "A" Pasteurized Milk Ordinance.
- 1065 <u>https://www.fda.gov/media/140394/download</u>.
- 1066 46. U. S. Food and Drug Administration. 2015. FSMA Final Rule for Preventive Controls for Human
- 1067 Food-Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive Controls for
- 1068 Human Food; Final Rule.
- 1069 47. U.S. Department of Health and Human Services. 2015. FSMA Final Rule on Produce Safety-
- 1070 Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption; Final
- 1071 Rule. <u>http://www.fda.gov/Food/GuidanceRegulation/FSMA/ucm334114.htm</u>, Accessed August 10, 2021.
- 1072 48. U.S. Food and Drug Administration. 2005. CPG Sec 570.450 Tree Nuts Adulteration with filth,
- 1073 involving the presence of the organism *Escherichia coli*. <u>https://www.fda.gov/regulatory-</u>
- 1074 information/search-fda-guidance-documents/cpg-sec-570450-tree-nuts-adulteration-filth-involving-
- 1075 presence-organism-escherichia-coli.
- 1076 49. U.S. Food and Drug Administration. 2016. FY 2014 2016 Microbiological sampling assignment
- 1077 summary report: raw milk cheese aged 60 days. <u>https://www.fda.gov/media/99340/download</u>,
- 1078 Accessed March 20, 2021.

- 1079 50. U.S. Food and Drug Administration. 2021. 21 CFR Part 112—Standards for the growing,
- 1080 harvesting, packing, and holding of produce for human consumption.
- 1081 <u>https://ecfr.federalregister.gov/current/title-21/chapter-I/subchapter-B/part-112?toc=1</u>, April 11, 2021.
- 1082 51. U.S. Food and Drug Administration. 2021. 21 CFR Part 117—Current good manufacturing
- 1083 practice, hazard analysis, and risk-based preventive controls for human food. https://www.ecfr.gov/cgi-
- 1084 <u>bin/text-idx?tpl=/ecfrbrowse/Title21/21cfr117_main_02.tpl</u>.
- 1085 52. U.S. Food and Drug Adminstration. 2017. Control of *Listeria monocytogenes* in Ready-To-Eat
- 1086 Foods: Guidance for Industry. https://www.fda.gov/files/food/published/Draft-Guidance-for-Industry--
- 1087 <u>Control-of-Listeria-monocytogenes-in-Ready-To-Eat-Foods-%28PDF%29.pdf</u>, Accessed April 26, 2021.
- 1088 53. Western Agricultural Processors Association. 2015. Good Agricultural Practices (GAPs) For
- 1089 Production of Tree Nuts. <u>https://ccgga.org/wp-content/uploads/2016/11/Good-Agricultural-Practices-</u>
- 1090 <u>for-Nut-Growers_WAPA-9-11-15-Final.pdf</u>, Accessed February 5, 2021.
- 1091 54. World Health Organization, F. 2019. Statistical aspects of microbiological criteria related to
- 1092 foods: A Risk Manager's Guide. <u>https://apps.who.int/iris/rest/bitstreams/1060496/retrieve</u>.
- 1093 55. Zwietering, M. H., L. Jacxsens, J. M. Membre, M. Nauta, and M. Peterz. 2016. Relevance of
- 1094 microbial finished product testing in food safety management. *Food Control*. 60:31-43.