

One Team, One Purpose

Food Safety and Inspection Service

Protecting Public Health and Preventing Foodborne Illness

Data Mining for Developing Efficient Food Hazard Sampling Plans

John J Johnston PhD MBA Scientific Liaison/Interdisciplinary Scientist

International Association for Food Protection Conference Salt Lake City, UT – July 10, 2018

Presentation Overview

- Review of U.S. pesticide monitoring programs
- Data mining project
 - Objective
 - Methods
 - Results
 - Conclusions
 - Future work

Monitoring Pesticides in Domestically Produced Foods

Interstate Commerce

Monitoring Pesticides - Enforcement

- USDA and FDA sample products and hold pending results:
 - Pesticide concentration is < US tolerance = non-violative
 - Pesticide concentration > US tolerance = violation
 - Pesticide detected with no tolerance = violation

USDA Pesticide Data Program (Non-Regulatory)

- USDA AMS leads the Pesticide Data Program (PDP)
 - Provides pesticide exposure data for use by EPA in risk assessments and pesticide re-registration
 - Testing performed by State Departments of Agriculture and USDA

Data Mining

 The process of extracting patterns from large data sets by combining statistics and artificial intelligence with database management to permit improved decision making.

Objective

 Proof of Concept: illustrate how data mining can be applied to develop sampling plan resulting in increased probability of identifying foods with pesticide violations.

Methods – Project database

- Database 2015 USDA AMS Pesticide Data Program Analytical Results
 - 10,187 Sample cases
 - Sample case = Produce Sampling event
 - 2,333,852 results cases
 - 107 425 results cases associated with each sample case (mean = 229)
 - Results file case = analytical results for 1 pesticide analyte

Methods – Project database

- Analytical results flagged as either:
 - 1. Non-detect
 - 2. Detect pesticide < tolerance
 - 3. Detect pesticide > tolerance
 - 4. Detect pesticide with no tolerance < LOQ
 - 5. Detect pesticide with no tolerance \geq LOQ

Methods – Project database

- Analytical results flagged as either:
 - 1. Non-detect
 - 2. Detect pesticide \leq tolerance
 - 3. Detect pesticide > tolerance
 - 4. Detect pesticide with no tolerance < LOQ
 - 5. Detect pesticide with no tolerance > LOQ

Presumed non-violative Presumed violative

- PDP sample and results files imported into Excel to facilitate data preparation
 - Data partitioning
 - Data reduction
 - Replacement
 - Spurious values
 - Data Transformations
 - Impute Data

- Excel sample file was converted into SAS file and imported into SAS Enterprise Miner
 - Target variable: violation

- Input variables:
 - Country of origin
 - Distribution state
 - Average latitude
 - Average temperature
 - Commodity
 - Commodity type
 - Claim
 - Distribution facility type

- Model Comparison
 - Models evaluated:
 - Decision trees
 - Regression models
 - Neural network models
 - Target = violation
 - Evaluation criteria: Misclassification rate

Model Comparison

Model Comparison

	Model Node	Pevious Node	Model Description	Target Variable	Validation Misclassification Rate
Winning Model —	Regression	Data Partition	Partition to Regression	TotalViolation	0.1556
	AutoNeural	Data Partition	Partition to AutoNeural Network	TotalViolation	0.1667
	Regression	Auto Neural Network	AutoNeural to Regression	TotalViolation	0.1667
	Neural Network	Data Partition	Data Partition to Neural Network	TotalViolation	0.1889
	Neural Network	Regression	Regression to Neural Network	TotalViolation	0.2111
	Autonomous Decision Tree	Data Partition	Data Partition to Autonomous Decision Tree	TotalViolation	0.2667
	Interactive Decision Tree	Data Partition	Data Partition to Interactive Decision Tree	TotalViolation	0.2667
	Pruned Decision Tree	Data Partition	Data Partition to Pruned Decision Tree	TotalViolation	0.2667

Cumulative Captured Response

Highest

Predicted Probability of Violation

Lowest¹⁸

• Regression results

Effect	DF	Chi-Square	Pr > ChiSq
AverLatitude	1	2.6619	0.1028
AverTemp	1	0.6715	0.4125
Claim	2	10.9993	0.0041
Commodity	19	146.8542	<.0001
Country	14	155.5018	<.0001
Month	11	11.3926	0.411

• Odds ratio

Commodity	Odds Ratio		
cherries	0		
cherries frozen	0		
corn fresh	0.001		
apples	0.002		
grape fruit	0.002		
peanut butter	0.002		
corn frozen	0.004		
oranges	8.222		
pears	11.748		
grapes	12.562		
potatoes	12.902		
cucumbers	14.244		
peaches	16.919		
lettuce	55.881		
green beans	71.149		
tomatoes	79.942		
nectarines	99.259		
strawberries	118.527		
spinach	999		

• Odds ratio

Country	Odds Ratio	
Guatemala	0	
Netherlands	0.001	
Honduras	0.002	
Peru	0.004	
Dominican Republic	0.006	
Nicaragua	0.006	
South Africa	0.006	
Argentina	0.009	
Australia	0.012	
Italy	9.758	
New Zealand	20.871	
USA	27.101	
Mexico	39.056	
Chile	213.811	
Greece	219.764	
Canada	659.711	
Turkey	999	

• Scoring

Cumulative Captured Response

23

Conclusions/Significance

- Data mining was used to successfully identify samples with higher probability of pesticide violations
- Model output could be used to develop Agency sampling plans that would increase the efficiency of pesticide monitoring
 - 80% of current violations could be detected by analyzing only 50% of current sample volume.
 - Remaining 50% of resources could be used to expand the variety of monitored commodities.

Future

- This approach is probably applicable to other prevalence (binary) food safety monitoring programs
- Other commodities
 - Meat
 - Poultry
 - Eggs
 - Fish
 - Dairy
- Other analytes of potential concern
 - Veterinary drugs
 - Environmental contaminants
 - Microbial hazards

Acknowledgements

- USDA AMS Pesticide Data Program
 - Diana Haynes
 - Roger Fry
 - Dawn Fay
- Leo Vijayasarathy, Computer Information Systems, College of Business, Colorado State University