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Presentation Overview

• Review of U.S. pesticide monitoring programs

• Data mining project
•

• Objective
• Methods
• Results
• Conclusions
• Future work
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Monitoring Pesticides in Domestically Produced Foods
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In general, pesticide registrants submit study data to EPA.  EPA reviews the data and if acceptable, sets the tolerance or the maximum allowable pesticide concentration for commodities.A tolerance is a pesticide-commodity pair.  Most pesticides have multiple tolerances meaning the pesticide is approved for use on multiple commodities and that there is a maximum allowable pesticide concentration for the pesticide on each of those commodities.The US Department of Agriculture samples meat, poultry, catfish, and egg products and conducts analyses to determine the concentrations of pesticides associated with the sample. The US Food and Drug Administration samples all other types of food and conducts analyses to determine the concentrations of pesticides associated with those foods.Food products that do not enter into inter-state commerce, may be inspected by state regulatory programs  



Monitoring Pesticides - Enforcement

• USDA and FDA sample products and hold pending 
results:
• Pesticide concentration is < US tolerance = 

non-violative
• Pesticide concentration > US tolerance = 

violation
• Pesticide detected with no tolerance = violation
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Sampled foods are held pending the results of the analyses.  If the pesticide concentration is less than or equal to the tolerance, the food is non- violative and released into commerce.If the pesticide concentration is greater than the tolerance = violation; triggers action by the regulatory agencyIf the pesticide is detected on a commodity for which there is no tolerance = violation; triggers action by the regulatory agency



USDA Pesticide Data Program (Non-Regulatory)

• USDA AMS leads the Pesticide Data Program (PDP) 
• Provides pesticide exposure data for use by EPA 

in risk assessments and pesticide re-registration
• Testing performed by State Departments of 

Agriculture and USDA
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The USDA has a second pesticide monitoring program which is non-regulatory.Foods are sampled, but the remainder of the lots are not held pending the results.The purpose is to provide an overview of pesticide concentrations in the US food supply – valuable for determining dietary pesticide exposure for US consumers. 



Data Mining

• The process of extracting patterns from large data 
sets by combining statistics and artificial 
intelligence with database management to permit 
improved decision making.
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Data mining is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management to permit improved decision making



Objective

• Proof of Concept: illustrate how data mining  can 
be applied to develop sampling plan resulting in  
increased probability of identifying foods with 
pesticide violations.
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Objective: of of Concept: illustrate how data mining  can be applied to develop sampling plan resulting in  increased probability of identifying foods with pesticide violations.



Methods – Project database

• Database 2015 USDA  AMS Pesticide Data 
Program Analytical Results 
• 10,187 Sample cases

• Sample case = Produce Sampling event 
• 2,333,852 results cases

• 107 – 425 results cases associated with 
each sample case (mean = 229)
• Results file case = analytical results for 1 

pesticide analyte
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For this project, I opted for use of USDA AMS Pesticide Data Program database. Advantages of using the  PDP data rather than actual regulatory data include:Easily accessible – publically available, no FOIA process neededAvailable to other researchers that want to check or improve upon my model.High level of Quality Control, adherence to generally accepted Data Governance principlesSampling Event = Column headings included Primary Key, Origin (Domestic, Import, Unknown), Commodity Type (Fresh, Frozen, etc.), Claim (Organic, No Claim), Quantity (number of items in analyzed sample) Grow State, Pack State, Purchase State, Date of Sample Collection, Distributor/Retail Type, Commodity, Commodity Variety.For each sampling event (sample case), a homogenized sample is analyzed for 200-250 pesticides.  Each associated results case = analytical results for one pesticide.  Analytical results are flagged as either: 1) non detect, 2) detect pesticide with tolerance  at less than loq, 3) detect pesticide with tolerance at greater or equal to loq, 4)detect pesticide with no tolerance at less than loq, 5) detect pesticide with no tolerance at greater or equal to loq.



Methods – Project database

• Analytical results flagged as either:
1. Non-detect
2. Detect pesticide < tolerance
3. Detect pesticide > tolerance
4. Detect pesticide with no tolerance < LOQ
5. Detect pesticide with no tolerance > LOQ
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Analytical results are flagged as either: 1) non detect, 2) detect pesticide with tolerance  at less than loq, 3) detect pesticide with tolerance at greater or equal to loq, 4)detect pesticide with no tolerance at less than loq, 5) detect pesticide with no tolerance at greater or equal to loq.



Methods – Project database 

• Analytical results flagged as either:
1. Non-detect
2. Detect pesticide < tolerance
3. Detect pesticide > tolerance
4. Detect pesticide with no tolerance < LOQ
5. Detect pesticide with no tolerance > LOQ

Presumed non-violative        Presumed violative
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1. Foods with no detected pesticides, obviously not a presumed violation sample (using presumed because this is a non-regulatory program)2. If there is a tolerance for the detected pesticide on the commodity and the concentration is less than the tolerance, then it is flagged as presumed non-violation3. If there is a tolerance for the detected pesticide on the commodity and the concentration is greater than the tolerance, then it is flagged as presumed violation4,5  If a pesticide is detected on a commodity for which there is no tolerance, it is a presumed violation.



Methods

• PDP sample and results files imported into Excel 
to facilitate data preparation
• Data partitioning
• Data reduction
• Replacement
• Spurious values
• Data Transformations
• Impute Data
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PDP sample and results files imported into Excel to facilitate data preparationData partitioning – flags were summarized into separate columns to facilitate subsequent analysesData reduction – violations for each pesticide specific results case were aggregated into the appropriate sample file caseReplacement – blank cells (no flag code) were replaced with 0Spurious values – investigate all estimated pesticide concentrations to make sure values are reasonableData Transformations – appropriate flags were combined to produce a column for total violationsImpute Data – samples with unknown origin were assigned average values for temperature and latitude



Methods
• Excel sample file was converted into SAS file and 

imported into SAS Enterprise Miner
• Target variable: violation

95.50%

4%0.50%

Below Tolerance

 No Tolerance

Residues Exceed
Tolerance

13

Food Safety and Inspection Service

Presenter
Presentation Notes
4.5% of cases were violations.  With such a rare target event rate, I used oversampling to artificially increase the violation rate for the training and validation data set. 



Methods

• Input variables: 
• Country of origin
• Distribution state
• Average latitude
• Average temperature
• Commodity
• Commodity type
• Claim
• Distribution facility type
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Origin – This input variable identifies the source of the samples as domestic, import or unknown. The majority of samples are of domestic origin = originate in the U.S. (76.1%).  Imported samples constitute 22.94% of the dataset.  Samples of unknown origin account for 0.94% Distribution State – For domestic samples, this input variable provides the best information as to the production location of the sample. California is the mode, more cases came from California than any other state.  Of the total number of cases, 37.27% come from California.  The minimum (0.01% of total) is New Hampshire and Nevada (tie). Country – This input variable identifies the source country of the sample. The mode of this distribution is the United Sates as 76.1% of samples were domestic.  The next highest countries of origin are Mexico (code 595) @ 9.52% and Chile (code275) @ 8.09%.  The minimum is France (code 350) @ 0.01%. Cross references for country codes are illustrated in Appendix A.2.b. Commodity – This input variable identifies the type of food associated with the case. The mode is Green Beans   (code GB) which comprises 7.4% of the samples. The minimum is sweet corn - frozen (code CS) which comprised 0.64% of the samples.  Commodity Type – This input variable identifies the type of sample (fresh, frozen, other).  The mode is Fresh which comprises 91.8% of samples. Frozen comprised 5.1% of the samples. The minimum was Other (dried, canned, etc.) a 3.1% Claim – This input variable identifies label claims associated with the case samples. The mode is No Claim @ 95.34%.  Samples labeled Organic comprised 3.49% of the total.  Samples labeled as Pesticide Free constitute 0.04% of the total and represent the minimum for this variable. Other claims (e.g. gluten-free, natural, etc.) are associated with 1.13% of samples.  Month – This input variable identifies the month during which the sample was collected. As the great majority of samples are fresh, this variable is likely indicative of harvest month, albeit with some lag.  Significant number of samples are distributed across all months.  The maximum is 9.45% of samples collected in May and the minimum is 7.44% of samples collected in December.  The average percent of samples collected per month is 7.69%. Average Latitude – This input variable attempts to identify the degrees of latitude from the equator where the samples were grown.  The maximum average (geographic center) latitude for sample locations is 60 degrees and the minimum is 16 degrees.  Latitude of 37 degrees is the mode; more samples were associated with this latitude than any other latitude. The average latitude was 35.4 degrees. Average Air Temperature – This input variable attempts to identify the average air temperature of the location where the samples were grown. For all the cases, the average air temperature is 13.27 C.  The maximum average air temperature is 23.45 C and the minimum average air temperature is 4.7 C. Distribution Facility Type – This input variable identifies the type of facility where the samples are collected.  Entries include distribution center, retail, wholesale, retail and wholesale, terminal market (e.g. farmers’ markets).  The mode is Distribution center (code D) which is associated with 47.2% of the cases.  The minimum is wholesale and retail outlets (code L) which constitute 4.72% of cases.



Methods

• Model Comparison
• Models evaluated:

• Decision trees
• Regression models
• Neural network models

• Target = violation
• Evaluation criteria: Misclassification rate
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Several different data mining models were compared for their ability to correctly identify violative and non-violative samples using violations as the target and misclassification rate as the evaluation criteria



Methods

• Model Comparison
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Sample data were the 2015 PDP results data.  Due to the low rate of target responses (violations = 4.5%), the violations were oversampled to facilitate development of a model that could effectively identify violationsThe oversampled data set was then partitioned into training dataset and a validation dataset (50:50)Various neural network, decision tree and regression models were trained using the training dataset and evaluated using the validation dataset.  The model with the lowest misclassification rate was selected as the winning or best model. 



Results
• Model Comparison 
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Model Node Pevious  
Node

Model 
Description

Target 
Variable

Validation 
Misclassification 

Rate

Regression Data 
Partition

Partition to 
Regression TotalViolation 0.1556

AutoNeural Data 
Partition

Partition to 
AutoNeural

Network
TotalViolation 0.1667

Regression Auto Neural 
Network

AutoNeural to 
Regression TotalViolation 0.1667

Neural Network Data 
Partition

Data Partition to 
Neural Network TotalViolation 0.1889

Neural Network Regression Regression to 
Neural Network TotalViolation 0.2111

Autonomous 
Decision Tree

Data 
Partition

Data Partition to 
Autonomous 
Decision Tree

TotalViolation 0.2667

Interactive 
Decision Tree

Data 
Partition

Data Partition to 
Interactive 

Decision Tree
TotalViolation 0.2667

Pruned 
Decision Tree

Data 
Partition

Data Partition to 
Pruned Decision 

Tree
TotalViolation 0.2667

Winning Model
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The winning or best performing model was the regression model as indicated by the misclassification rate.



Results
• Cumulative Captured Response
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Another way to evaluate model performance is by examining the cumulative percent capture response.The x axis cumulative captured response is the percent of the positives that were correctly identified by the model.The y axis depth is the percent of samples from highest to lowest probability of a violationFor example, the first 20% of samples with the highest estimated probability of being violative captured 40% of the total number of violations in the data set. The slope slightly decreases around 35%.  But even at 50%, the top half of samples with the highest predicted probability of being violative will capture about 82% of the violations. 



Results

• Regression results

Effect DF Chi-Square Pr > ChiSq

AverLatitude 1 2.6619 0.1028

AverTemp 1 0.6715 0.4125

Claim 2 10.9993 0.0041

Commodity 19 146.8542 <.0001

Country 14 155.5018 <.0001

Month 11 11.3926 0.411
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The Chi Square analysis can be used to identify the input variables that were most valuable for predicting violative samples. Chi square analysis of the regression results indicates that commodity and country were the highly significant input variables.  Claim was also significant. 



Results

• Odds ratio

Commodity Odds Ratio
cherries 0

cherries frozen 0
corn fresh 0.001

apples 0.002
grape fruit 0.002

peanut butter 0.002
corn frozen 0.004

oranges 8.222
pears 11.748

grapes 12.562
potatoes 12.902

cucumbers 14.244
peaches 16.919
lettuce 55.881

green beans 71.149
tomatoes 79.942
nectarines 99.259

strawberries 118.527
spinach 999 20
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The odds ratio analysis provides a ranking of the relative probability of detecting a violation in each commodity sampled in 2015.Commodities with odds ratios less than 1 are less likely to contain violative pesticide concentrations than the average of foods included in this database.   Conversely commodities with odds ratios greater than 1 are more likely to contain pesticide violations.  For example oranges are more than 8 times more likely to contain pesticide violations than a random produce sample from this database
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Results

• Odds ratio

Country Odds Ratio
Guatemala 0
Netherlands 0.001
Honduras 0.002
Peru 0.004
Dominican Republic 0.006
Nicaragua 0.006
South Africa 0.006
Argentina 0.009
Australia 0.012
Italy 9.758
New Zealand 20.871
USA 27.101
Mexico 39.056
Chile 213.811
Greece 219.764
Canada 659.711
Turkey 999 21
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The odds ratio analysis provides a ranking of the relative probability of detecting a violation in commodities from each country of origin sampled in 2015.
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Results 

• Scoring
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What we really want to do is to use the model to predict which samples would be violative in subsequent years.  So, I analyzed the most current data set, which is from 2016, with the model developed using the 2015 data. I removed the violation information so that the 2016 data set no longer contained the results of the laboratory analyses.  The model predicted the probability of each sample being violative.  The samples were then sorted from highest to lowest predicted probability of a sample being violative.



Results

• Cumulative Captured Response
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With respect to captured response, the model performance with the subsequent year’s samples is very similar to performance with the 2015 validation data set.For example, the first 20% of samples with the highest estimated probability of being violative captured about 45% of the total number of violations in the data set. At 50%, the top half of samples with the highest predicted probability of being violative will capture about 80% of the violations. 



Conclusions/Significance

• Data mining was used to successfully identify 
samples with higher probability of pesticide 
violations 

• Model output could be used to develop Agency 
sampling plans that would increase the efficiency 
of pesticide monitoring
• 80% of current violations could be detected by 

analyzing only 50% of current sample volume.
• Remaining 50% of resources could be used to expand 

the variety of monitored commodities.
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This data mining project achieved the stated goal and objective:  to illustrate the application of data mining as a means to significantly increase the efficiency of pesticide monitoring in U.S. consumed (domestic and imports) produce. Of the various models evaluated, the regression model was the top performing model.  The regression model provides guidance to permit the Agency to capture 80% of pesticide violations (target) while analyzing only 50% of the current number of samples analyzed annually. The remaining 50% of resources could be used to randomly monitor other types of domestic and imported foods.  This approach would enable the agency to strike a balance between optimizing efficiency (amount of food with pesticide violations removed from commerce) while still actively monitoring the pesticide content of a broad range of domestic and imported produce. 



Future
• This approach is probably applicable to other 

prevalence (binary) food safety monitoring programs 
• Other commodities

• Meat 
• Poultry 
• Eggs 
• Fish 
• Dairy

• Other analytes of potential concern
• Veterinary drugs 
• Environmental contaminants 
• Microbial hazards
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Models generally need to be updated periodically. For this application, updating is likely necessitated by the ever-changing landscape of pesticides in the U.S. diet as new pesticides become developed and approved, approved uses for existing pesticides are expanded, and/or new countries import produce into the United States.  Additionally, climate change and/or natural and man-made disasters may impact pest pressure on agriculture resulting in changing pest pressure and pesticide use practices.  Again, as a result of such a dynamic environment, models should be evaluated and updated regularly. A straight forward approach to updating the model would be to append each year’s data to the existing training and validation data set. Then rerun the training and validation step before developing the next year’s sample plans. 
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