Salmonella surveillance in United States broiler production, 2016-2020:

Regional differences and the role of multiple serotypes in production

Nikki Shariat, Ph.D.

Assistant Professor Poultry Diagnostic and Research Center, Department of Population Health

nikki.shariat@uga.edu

USDA-FSIS

Salmonella in poultry: Science and Research Round Table

College of Veterinary Medicine UNIVERSITY OF GEORGIA

"What we find in live production doesn't match what we find in the plant"

"What we find in live production doesn't match what we find in the plant"

Poultry Diagnostic & Research Center

Georgia Poultry Laboratory Network

Serovar Kentucky

Approach

- Analyze FSIS Salmonella monitoring data (2016-2020) Carcasses and raw, intact parts Nationally, regionally
- Compare FSIS serovar data from processing establishments with Salmonella breeder monitoring data in Georgia (2016-2020)
- Multi-serovar analyses of breeder samples

National trends

- Braenderup
- Enteritidis

•

Siceloff et al., submitted

- Heidelberg
- **Infantis**
- Kentucky
- Schwarzengrund
- Typhimurium
- **I 4,[5],12**:i-
- Others

- Serovar Infantis has increased significantly in carcasses (6.5% to 21.2%) and parts (4.7% to 27.0%)
- The proportions of each serovar don't match between carcasses and parts
 - serovar Kentucky decreased in parts
 - serovar Enteritidis increased in parts

Serovar **Heidelberg** reduced in parts (6.2% to 1.4%)

Data source: FSIS

Siceloff et al., *submitted*

Data source: FSIS

Salmonella in breeders doesn't match Salmonella in the plant

Siceloff et al., submitted

```
Data source: FSIS, GPLN
```

Is this because *Salmonella* surveillance is limited to finding the most abundant serovars?

Are low abundance serovars hidden by Kentucky?

CRISPR-SeroSeq: amplicon-based sequencing tool to identify multiple serovars within a *Salmonella* population

Using CRISPR-SeroSeq to profile serovar populations

Using CRISPR-SeroSeq to profile serovar populations

Using CRISPR-SeroSeq to profile serovar populations

Multi-serovar Salmonella populations exist in one third of breeder flocks

Relative serovar

frequency

0 - 0.10

0.10 - 0.25

0.25 - 0.50

0.50 - 0.75

0.75 - 0.90 0.90 - 1

serovars/sample 4

- Samples submitted to GPLN 7/20 6/21
- Collected samples each week on a different day
- Included 2-4 Salmonella positive samples per week (average)
- 134 samples analyzed using CRISPR-SeroSeq

Multi-serovar Salmonella populations exist in one third of breeder flocks

- Samples submitted to GPLN 7/20 6/21
- Collected samples each week on a different day
- Included 2-4 *Salmonella* positive samples per week (average)
- 134 samples analyzed using CRISPR-SeroSeq
- Every sample contained serovar Kentucky (8/8)
- Half of the samples contained a single serovar (Kentucky)
- Kentucky was the major serovar in 6/8 samples
- Half contained multiple serovars (2-4 serovars)

Relative serovar frequency 0 - 0.10 0.10 - 0.25 0.25 - 0.50 0.50 - 0.75 0.75 - 0.90 0.90 - 1

Multi-serovar Salmonella populations exist in one third of breeder flocks

- Samples submitted to GPLN 7/20 6/21
- Collected samples each week on a different day
- Included 2-4 *Salmonella* positive samples per week (average)
- 134 samples analyzed using CRISPR-SeroSeq
- Every sample contained serovar Kentucky (8/8)
- Half of the samples contained a single serovar (Kentucky)
- Kentucky was the major serovar in 6/8 samples
- Half contained multiple serovars (2-4 serovars)

July 2020 – June 2021

- 32% samples contain more than one serovar (average 1.6; range 1-11)
- 26 different serovars (5 in CDC top 10)

Kentucky is usually most abundant, Infantis is usually a minority

	_		_		_	-					
Serovar			В		С			Serever			
Agona]]]		Seruvalanaa	Incidence of	Majority	Minority
Alachua		1 1					Serovar	prevelance	majority to	serovar in	serovar in
Altona		1 1						across	minority (ratio)	sample (%)	sample (%)
Anatum		1 1						samples			
Bradford		1 1					Agona	2	1:1	50	50
Cannstatt]]					Alachua	6	3:3	50	50
Cerro]]					Altona	4	2:2	50	50
Cubana]]					Anatum	3	1:2	33	67
Enteritidis]←]		-			Bradford	1	0:1	0	100
Hadar]]					Cannstatt	1	0:1	0	100
Infantis		←					Cerro	14	8:6	57	43
Kentucky I				-		-	Cubana	2	0:2	0	100
Kentucky II		1 1					Enteritidis	2	0:2	0	100
Liverpool		1 1					Hadar	1	0:1	0	100
Mbandaka		1 1					Infantis	12	1:11	8	92
Montevideo I		1 1					Kentucky I	104	93:11	89	11
Montevideo II/III/IV		1 1					Kentucky II	1	0:1	0	100
Orion		1 1					Liverpool	9	4:5	44	56
Domono		1 1					Mbandaka	12	3:13	25	108
Poopo	<u> </u>	· ·					Montevideo I	3	0:3	0	100
Schwarzongrund		-						4	0:4	0	100
Sonftonhora							Relative seriovar	1	1:0	100	0
Semienberg	-						frequencióna	1	1.0	100	100
					<u> </u>			5	0.1	0	100
Tennessee								1	J.2 0:1	00	40
Inompson							– 0 - 0.10 erg	1	0.1	25	75
lyphimurium							– 0.10 - 0.25 <u>lga</u>	4 5	1.5	25	100
Uganda							- 0.25 - 0.50 ee	5	0.5	0	100
Worthington							0.50 - 0.75 on	2	0.2	56	100
# corovoro/comple	A		2		4		0.75 - 0.90	3	2.4	67	32
# serovars/sample	4		3						2.1	100	0
off of al submitte	$\sim d$					ļ		۷ ک	2.0	100	

Siceloff et al., submitted

Kentucky is usually most abundant, Infantis is usually a minority

0	ΙΔ		R	(
Serovar		і т			_		Serovar			N.41 11
Agona							prevelance	Incidence of	Majority	Minority
Alachua						Serovar	across	majority to	serovar in	serovar in
Altona							samples	minority (ratio)	sample (%)	sample (%)
Anatum							Sumples			
Bradford						Agona	2	1:1	50	50
Cannstatt						Alachua	6	3:3	50	50
Cerro		Ι Γ				Altona	4	2:2	50	50
Cubana		Ι Γ				Anatum	3	1:2	33	67
Enteritidis		←		← [Bradford	1	0:1	0	100
Hadar		1 T				Cannstatt	1	0:1	0	100
Infantis		← [_	Cerro	14	8:6	57	43
Kentucky I		-		← 🔳		Cubana	2	0:2	0	100
Kentucky II		1 1				Enteritidis	2	0:2	0	100
liverpool		1 t			_	Hadar	1	0:1	0	100
Mhandaka		1 †			_	Infantis	12	1:11	8	92
Montevideo I		1 t			_	Kentucky I	104	93:11	89	11 —
Montevideo II/III/IV		†	_		_	Kentucky II	1	0:1	0	100
				-	_	Liverpool	9	4:5	44	56
Demono	-	+	_		_	Mbandaka	12	3:13	25	108
Pomona	-			-	_	Montevideo I	3	0:3	0	100
Poona				-	_	Montevideo II/III/IV	4	0:4	0	100
Schwarzengrund					_	Orion	1	1:0	100	0
Senttenberg			_	-	_	Relative seponationa	1	1:0	100	0
Soerenga	<u> </u>				_		1	0:1	0	100
Tennessee					_	0 grund	5	3:2	60	40
Thompson					_	- 0 - 0.10	1	0:1	0	100
Typhimurium				← ∟		- 0.10 - 0.25 ga	4	1:3	25	75
Uganda						- 0.25 - 0.50 ee	5	0:5	0	100
Worthington						0.50 - 0.75 on	2	0:2	0	100
							9	5:4	56	44
# serovars/sample	4		3	1			3	2:1	67	33
off at all aubmitt	00					ton	2	2:0	100	0

Siceloff et al., submitted

Kentucky is usually most abundant, Infantis is usually a minority

	1 A				^				1			
Serovar	A		Β		L			Serovar				
Agona		1 T		Ι				prevelance	Incidence of	Majority	Minority	
Alachua		1 T		Í			Serovar	prevelance	majority to	serovar in	serovar in	
Altona		1 î		Í				across	minority (ratio)	sample (%)	sample (%)	
Anatum		1 î		Í				samples				
Bradford		1 T		Í			Agona	2	1:1	50	50	
Cannstat	:	1 T		Ī			Alachua	6	3:3	50	50	
Cerro	,	1 T		Ī			Altona	4	2:2	50	50	
Cubana		1 î		Í			Anatum	3	1:2	33	67	
Enteritidis		 ← 		← 1			Bradford	1	0:1	0	100	
Hadar	·	1 1		Ì			Cannstatt	1	0:1	0	100	/
Infantis		 ← [1			Cerro	14	8:6	57	43	
Kentucky				← 1	•	_	Cubana	2	0:2	0	100	
Kentucky I		1 1		l l			Enteritidis	2	0:2	0	100	
		1 1		t t			Hadar	1	0:1	0	100	
Mbandaka		1 1		t t			Infantis	12	1:11	8	92	1
Montevideo		1 1		t			Kentucky I	104	93:11	89	11	
Montevideo II/III/IV	7	1 1		ł			Kentucky II	1	0:1	0	100	1
		1 1		1			Liverpool	9	4:5	44	56	
Demono		1 1		ł			Mbandaka	12	3:13	25	108	
Poopo		1 1					Montevideo I	3	0:3	0	100	
Sobworzonaruna		-					Montevideo II/III/IV	4	0:4	0	100	
Schwarzengrund							Bolativo s er ovar	1	1:0	100	0	
Sentenberg		{ }		-			frequences	1	1:0	100	0	
Soerenga	<u> </u>	{ }		-					0.1	0	100	
Iennessee		4 +						5	3.2	60	40	
Inompson	-	{ }					– 0 - 0.10 erg	1	0.1	25	75	
lyphimurium	-	4 4					– 0.10 - 0.25 <u>iga</u>	4	1.3		100	
Uganda	<u> </u>	4 4					- 0.25 - 0.50 ee	5	0.5	0	100	
Worthington] [l			0.50 - 0.75 on	2	0.2	56	100	
# corovoro/comple	A		2		1		0.75 - 0.90	2	2.1	67	33	
# serovars/sample	4		3					2	2.1	100	0	
Siceloff et al., submitt	fed							2	1 2.0	100	U U	

Caveats

- These are "trends"
- Missing piece of the puzzle: broilers
- Multi-serovar analysis only performed on breeders in Georgia

Summary

- Salmonella in live production does not match what we find in the plant
- Salmonella in poultry is complex; multi-serovar populations are one piece of the puzzle

Moving forward

- Implications for how/when we perform Salmonella monitoring?
- Integrators can use information derived from multi-serovar analysis to choose serovars for AV, complex biomapping/biosecurity

Amy Siceloff PhD student

Poultry Diagnostic & Research Center

nikki.shariat@uga.edu

Doug Waltman

