

Systems-Based Approach to Salmonella Ecology in Pastured Poultry Systems

Dr. Michael J. Rothrock Jr.

USDA-ARS US National Poultry Research Center Egg Safety & Quality Research Unit Athens, GA

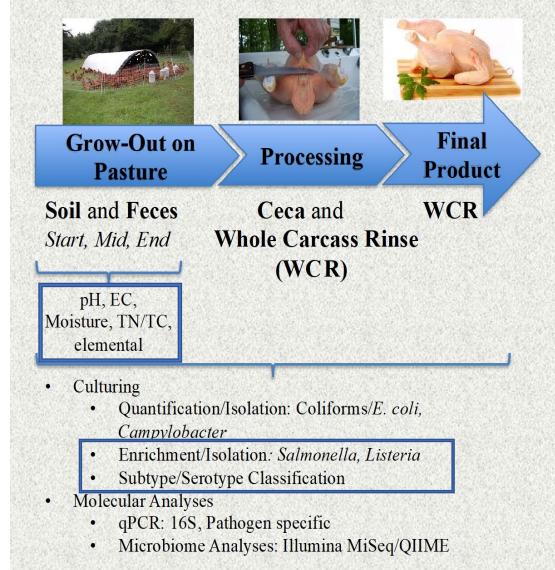
1

What is Pastured Poultry?

Conventional chicken operations

Pasture-raised chicken operations

Why Focus on Pastured Poultry Producers?


- Lots of interest in locally-grown, "all natural" agricultural products
 - To feed the globe, we will need to eat more locally
 - How a lot of the world produces their food
- There is a definite shift in the poultry marketplace towards antibiotic-free, no antibiotics ever, "all-natural", free range products, which are all versions of what small producers are already doing on their farms
- Access to farms is key to a lot of applied research studies, and in my experience, small producers have provided greater access than conventional operations
 - More flexibility in research goals too

Pastured Poultry Project

- 2014-2017: Following 42 flocks from 11 farms, looking at pasture feces/soil during grow-out, processing samples, and final product samples
 - Pre-Harvest data collected;
 - Management data (questionnaires)
 - Physiochemical data (pH, EC, moisture, nutrients/elements)
 - Meteorological data (temperature, rainfall, wind, humidity)
 - Biological data (*Salmonella, Campy, Listeria,* Microbiome)

	No. of + samples	No. of - samples	Prevalence ¹
		Sample Type	
Feces	124	691	0.152 ^B
Soil	94	721	0.115 ^B
Ceca	27	183	0.129 ^B
Processing WCR	67	168	0.285 ^A
Final Product WCR	41	189	0.178^{AB}
		Farm	
Α	107	398	0.212 ^{AB}
В	35	220	0.137 ^A
С	3	42	0.067
D	1	44	0.022
Ε	45	241	0.157 ^A
Н	24	86	0.218 ^{AB}
Ι	101	289	0.259 ^A
J	0	110	0.000
Κ	8	272	0.029 ^C
L	0	150	0.000
Μ	29	101	0.223 ^{AB}

¹ Superscript letters indicated significantly different prevalence values based on ANOVA analyses using the Tukey's post-test at a significance level of p < 0.05. For the Farm data, only farms that were followed over multiple years were included in the statistical analyses.

In no sample were all 5 subsamples positive for *Salmonella* Pre-Harvest: ~15% feces, ~12% soil Post-Harvest: ~13% ceca, ~28% Proc WCR ~18% Final Prod. WCR

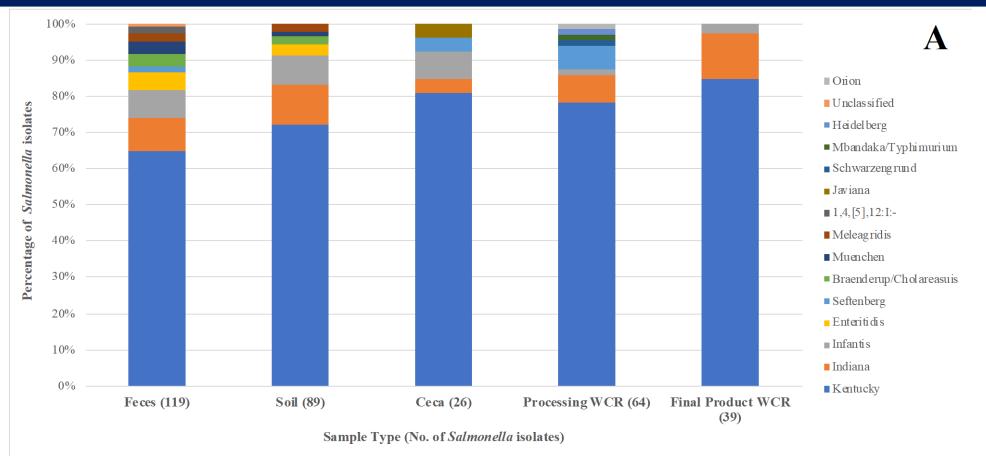
High variation between farms, with multiple farms showing an absence of *Salmonella* for different sample types

But who are the main *Salmonella* players, and how do they relate to food safety targets?

Salmonella serotype diversity

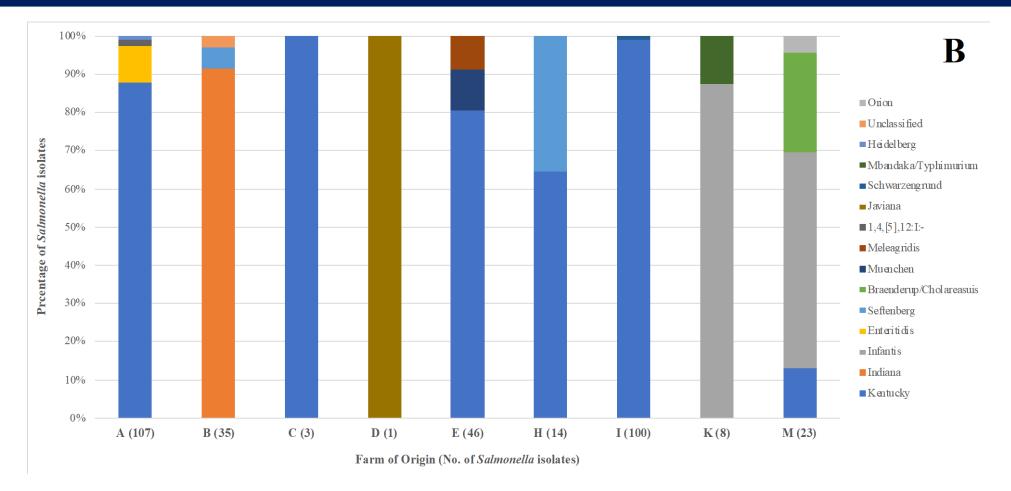
	-	Serotype	CDC top
	No. of Salmonella isolates	Prevalence ¹	322
Kentucky	245	0.7270	No
Indiana	32	0.0950	No
Infantis	20	0.0593	Yes
Enteritidis	9	0.0267	Yes
Seftenberg	7	0.0208	Yes
Braenderup/Cholareasuis	6	0.0178	Yes
Meleagridis	5	0.0148	No
Muenchen	5	0.0148	Yes
1,4,[5],12:I:-	2	0.0059	Yes
Heidelberg	1	0.0030	Yes
Javiana	1	0.0030	Yes
Mbandaka/Typhimurium	1	0.0030	Yes
Orion	1	0.0030	No
Schwarzengrund	1	0.0030	Yes
Unclassified	1	0.0030	NA

Kentucky, by far, was the most prevalent serotype


Only ~16% (53/337) of the isolates belonged to serotypes that are important to human health!

Was this diversity sample type or farm dependent?

¹ Calculated based on the No. of isolates for a given serotype divided by the total number of *Salmonella* isolates (337).

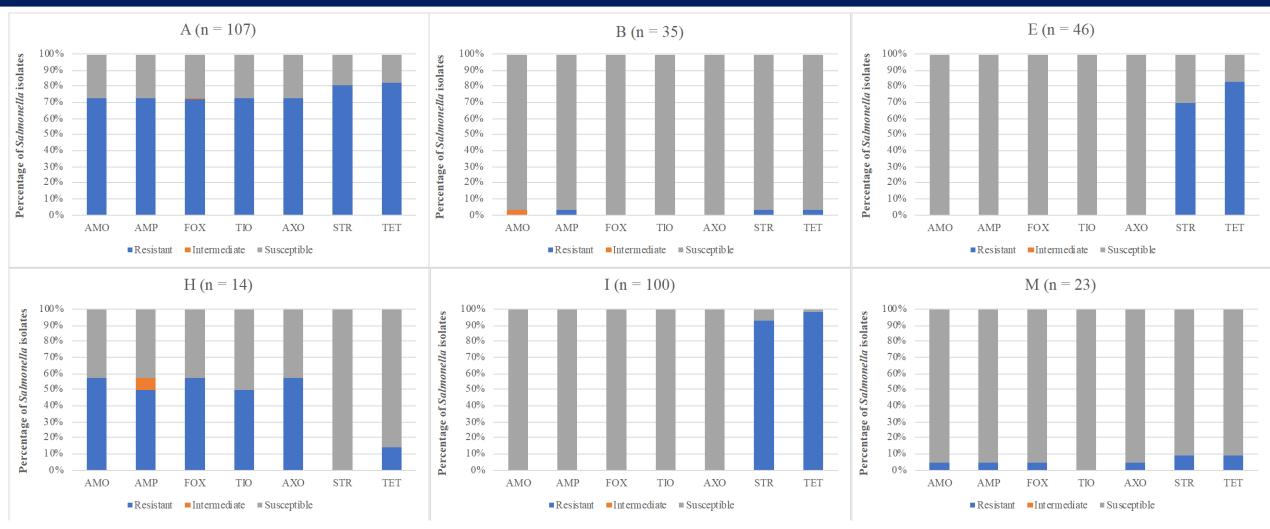

² Based on the CDC Atlas of Salmonella in the United States, 1968-2011.

Diversity profiles were relatively stable over the different sample types

Diversity profiles appear to be farmdependent

	No. of isolates	MDR isolates	MDR Rate
	Sample Type		
Feces	119	30	0.252
Soil	89	34	0.382
Ceca	26	2	0.077
Processing WCR	64	13	0.203
Final Product WCR	39	13	0.333
	Farm		
Α	107	80	0.748
В	35	1	0.029
С	3	3	1.000
D	1	0	0.000
Ε	46	0	0.000
Н	14	8	0.571
Ι	100	0	0.000
J	0	0	0.000
K	8	0	0.000
L	0	0	0.000
Μ	23	1	0.043

¹ Isolates were considered multidrug resistant (MDR) if the expressed resistance to \geq 3 antibiotics on the gram negative NARMS protocol and breakpoints.

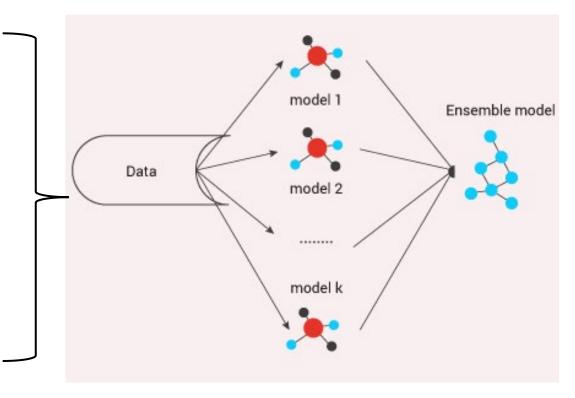

Rothrock et al (2021) https://doi.org/10.3389/fanim.2021.761930

In the absence of antibiotic use on farm, ~27% (92/337) of the isolates were considered MDR

Aside from ceca, MDR rates were similar among sample types, but large differences were observed based on farm of origin.

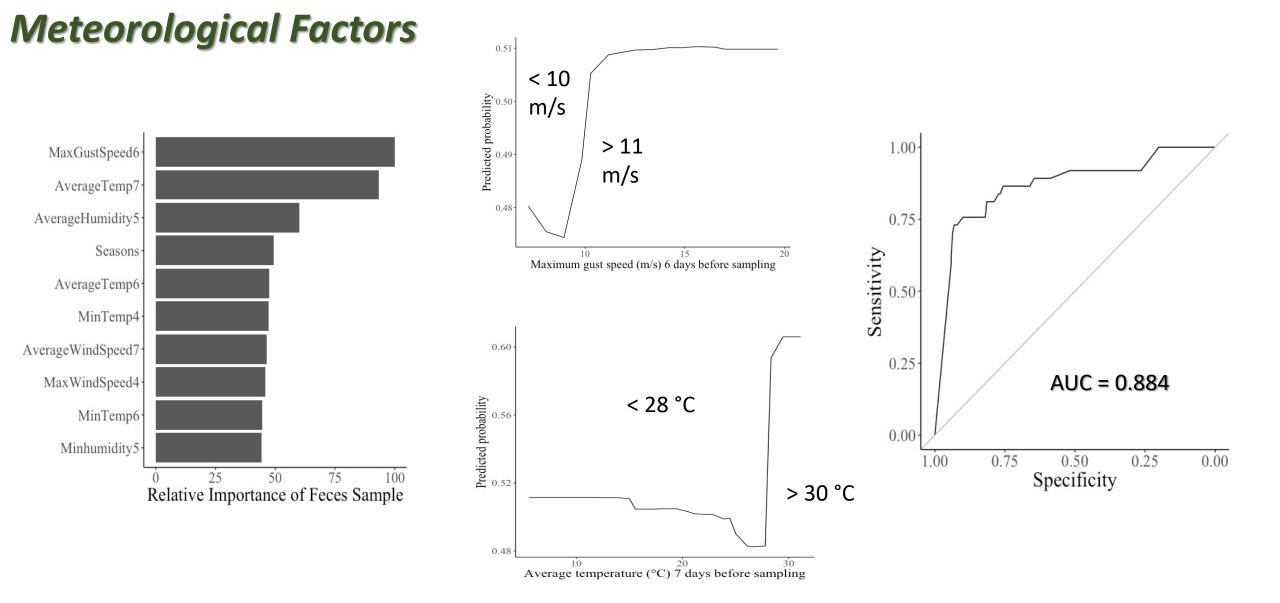
Some farms even exhibited unique AR profiles

Indicative of potential carriage and survival of *bla_{CMY-2}* gene on a plasmid within the farm's infrastructure

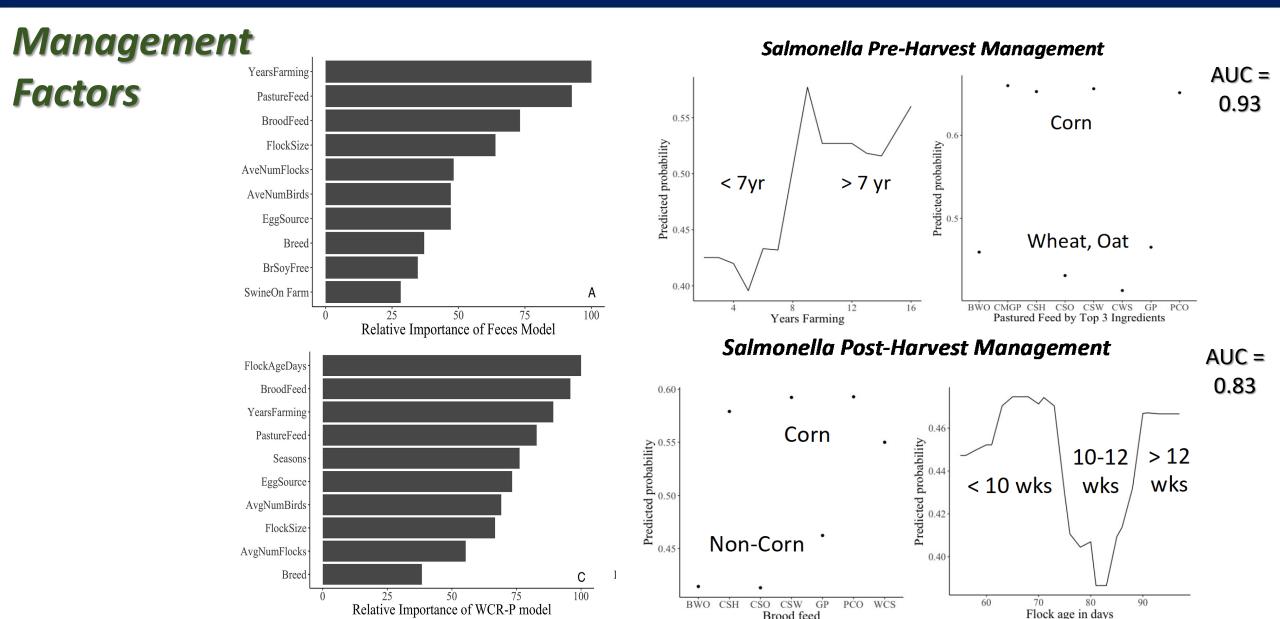


Predictive Modeling of Salmonella Prevalence

Dr. Mishra UGA


Management	Meteorological
Brood Feed	Avg Max Temp
Pasture Feed	Avg Mean Temp
Years Farming	Avg Min Temp
Water Source	Avg Humidity
Other Animals Reared	Avg Wind Speed
Flock Age	Avg Wind Gust Speed
Rearing Season	Rainfall
<u>San</u>	nples
Feces (Pre-Harvest)	WCR (Post-Harvest)

Random Forest Modeling



Hwang et al (2020) https://doi.org/10.1016/j.scitotenv.2019.136359

USDA Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

Hwang et al (2020) https://doi.org/10.1016/j.lwt.2020.109423

Lets Go "Deeper" - Ensemble approach

□ Predictions based on single model

Problem: Feature importance varies with the model

□ Ensemble Approach to increase confidence in prediction

- □ 5 different models with same dataset
 - □ Random Forest (RT)
 - □ XGBoost (XG)
 - □ Three *deep learning* approaches
 - □ Multi-layer perceptron (MLP)
 - □ AutoEncoder (ENC)
 - □ Generative Adversarial Network (GAN)

Drs. Nanduri & Ramkumar

Model Input Variables

1	Seasons	18	LayersOnFarm	1
2	AvgNumBirds	19	CattleOnFarm	2
3	AvgNumFlocks	20	SwineOnFarm	3
4	YearsFarming	21	GoatsOnFarm	4
5	EggSource	22	SheepOnFarm	5
6	BroodBedding	23	WaterSource	6
7	BroodFeed	24	FreqBirdHandling	7
8	BrGMOFree	25	AnyABXUse	8
9	BrSoyFree	26	FlockAgeDays	9
10	BroodCleanFrequency	27	Breed	10
11	AvgAgeToPasture	28	FlockSize	11
12	PastureHousing	29	AnimalSource	12
13	FreqHousingMove			13
14	AlwaysNewPasture			14
15	PastureFeed			15
16	PaGMOFree			16
17	PaSoyFree			17
				18
	Previous Predictive	Mod	deling	19
			0	20

	рН	
2	EC	
5	Moisture	
Ļ	TotalC	
5	TotalN	
;	CNRatio	
,	Ca	
3	Cd	
)	Cr	
.0	Cu	
.1	Fe	Phy:
2	К	<u> </u>
.3	Mg	
.4	Mn	
.5	Мо	
.6	Na	
.7	Ni	
.8	Р	

Pb

Zn

Physiochemical analysis

Critical Farm Variables

Sample Type	Model	Electrical Conductivity (EC)	Magnesiu m(Mg)	Flock Size	Sodium (Na)	Zinc (Zn)	Potassiu m(K)
	RT	1	5				8
	XG						
Feces	MLP		3	1		13	
	ENC		3				2
	GAN		4	1			3
	RT			2	6	8	
	XG						
Soil	MLP	3	8	1	4	9	2
	ENC	2			1	5	
	GAN	4	2	1	3	6	

Recommendations to Reduce Salmonella Prevalence

Farm Variable	Feces	Soil
K	> 5000 ppm	
GMO Free Pasture/Brood feed	No	
Cu	< 10 ppm	
Са	< 10000 ppm	
Average Number of birds		> 1000 ppm
Soy free Brood feed		No
EC		> 100 mS/m
Flock size		>500
Na, Zn		> 20 ppm
Years of farming		< 3

Evaluation: Production Scale

- □ Flock size a confounding farm variable
- Evaluations based on production scale
 - □ Professional farming Greater than 3 flocks
 - □ Hobby farming fewer flocks
- Recommendations based on fecal and soil models

Recommendations to Reduce Salmonella Prevalence

Feces

Farm Variable	Professional	Hobby
Mn	< 100 ppm	< 100 ppm or > 150 ppm
К	5000 – 6000 ppm	< 5000 ppm
Pb	< 14 ppm	< 5 ppm
CN Ratio		< 15
Mg	2000 – 3500 ppm	
Na	< 1000 ppm	
EC	3000 – 4000 ppm	
Flock age (days)	< 30	
Soy free brood feed	Yes	

Soil

Farm Variable	Professional	Hobby
Р	< 600 ppm	
Са	< 1000 ppm	
Years farming	> 8	
Soy free brood feed	Yes	
Mn		40 – 100 ppm
Flock size		> 25
Na		> 10 ppm

Future Directions

- Use microbiome data as the input data for Salmonella to test not only meteorological, physicochemical, and management variables, but also biological variables
 - Ex: Relationship of Salmonella to pre-/probiotic taxa (e.g. Lactobacillus, Streptococcus) and how these relationships change based on management variables
- Further explore the link between pre-harvest and processing variables and final product *Salmonella* prevalence using deep learning methodologies

Expand Beyond Pastured Poultry Systems

- This work highlights the potential for these systems-based approaches in conventional poultry systems, especially as they begin to adopt some of these systems with broilers have greater access to land outside of the houses
- The more datapoints for each type of metadata you have, the better the models become, and FSIS has access to a lot of data (especially from post-harvest environments).
- Potential to provide actionable data and recommendations to stakeholders to enhance poultry food safety

Acknowledgements

Dr. Aude Locatelli Dr. Jean Guard Dr. Ade Oladeinde Dr. Richard Gast Latoya Wiggins Laura Lee-Rutherford Kim Ingram Dr. Kelli Hiett Katelyn Griffin Cheryl Gresham Manju Amin Sydney Graham (UW)

UGA MPH Interns Ashland Roquemore Destin Miller Joseph Fujikawa <u>Dr. Abhinav Mishra</u> <u>Chase Golden</u> <u>Daizy Hwang</u> <u>Xinran Xu</u>

Dr. Steven Ricke Dr. Si Hong Park Dr. Sun Ae Kim Dr. Kristina Feye

<u>Dr. Bindu Nanduri</u> <u>Dr. Mahalingam</u> <u>Ramkumar</u> <u>Dr. Moses Ayoola</u> Dr. Nisha Pillai