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Live Receiving and Live Hanging 

Live receiving is the initial step in the poultry slaughter process and begins when live poultry are 
received onto the official premise.  Live hanging is the process of suspending live poultry in 
shackles after removing them from transport cages and begins when transport cages are off-
loaded.  With chemical immobilization, live poultry may be immobilized prior to hanging. 

Potential Risk Factors 

Potential biological risk factors exist during live receiving and live hanging and include 
pathogenic and non-pathogenic microorganisms on the feathers and skin, and in the crop, cecum, 
and colon contents of live poultry.  Salmonella and Campylobacter are significant pathogens; 
psychrophilic microorganisms are significant spoilage organisms; and other microorganisms are 
indicators of sanitation process control. 

Large numbers of microorganisms can be found on live poultry at live receiving. Kotula and 
Pandya (1995) found that 60.7 percent of feather samples and 41.8 percent of skin samples 
contained 6.7 log10 and 5.9 log10 Salmonella/gram (g) respectively.  Byrd et al. (1998) found 
Campylobacter spp. in 62 percent of crops and 4 percent of ceca.  Wempe et al. (1983) recovered 
3.8 to 4.8 log10 and 5.5 to 6.8 log10 C. jejuni/g of feathers and cecal content, respectively.  
Berrang et al., found more Campylobacter in feathers (5.4 log10) than in skin (3.8 log10, p<0.05) 
but other enterics did not differ at the two sites.  Cloaca harbored more microbes (including 
E. coli and other coliforms) than any other site (p
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<0.05). Kotula and Pandya (1995) found that 
77.5 percent of feather samples and 57.5 percent of skin samples contained 7.4 log
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10 and 
6.5 log10 Campylobacter jejuni/g. respectively.  Geornaras et al. (1997) found 3.8 log10 
Pseudomonas/g of feathers.  Mead et al. (1993) found 2 to 2.8 log10 Pseudomonas/g neck skin.  
Kotula and Pandya (1995) reported that the feathers and skin contained 7.9 log10 and 6.7 log10 
E. coli/g, respectively. 

Microorganisms present in/or live poultry at live receiving can cross-contaminate product.  
Bryan et al. (1968) demonstrated that Salmonella enters the establishment on incoming turkeys 
and contaminates equipment and subsequent poultry products.  Clouser et al. (1995a) found that 
when Salmonella was present on the surface of turkeys prior to processing, the incidence of 
Salmonella tended to increase throughout the slaughter process.  Herman et al. (2003) concluded 
that establishments cannot avoid contamination when C. jejuni-positive poultry are delivered to 
live receiving.  Furthermore, there is a statistically significant correlation (p<0.001) between 
contamination of the carcass and presence of the microbe after processing.  Berrang et 
al. (
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2003b) found that >50 percent of Campylobacter-negative broilers were Campylobacter-
positive following exposure to feces in a commercial dump cage.  Newel et al. (2001) 
demonstrated a link between Campylobacter-positive poultry at live receiving and 
Campylobacter-positive carcasses following immobilization, exsanguination, scalding, feather 
removal, evisceration, and chilling.  Fluckey et al. (2003) demonstrated a link between 
Campylobacter- and Salmonella-positive cecal content in live poultry and Campylobacter- and 
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Salmonella-positive carcasses following evisceration and chilling.  By using PFGE profiles, 
which allows identification of specific serotypes, whole carcasses were sampled at eight stages 
of turkey processing.  Prevalence data showed that contamination rates varied along the line and 
were greatest after defeathering and after chilling.  The same profiles were found to be present 
all along the processing line, while on other occasions, additional serotypes were recovered that 
were not detected earlier on the line, suggesting that the birds harbored more than one serotype 
of Salmonella, or there was cross-contamination occurring during processing (Nde et al. 2006). 
Chemical potential risk factors introduced at live receiving include violative chemical residues 
from a pharmaceutical, feed additive, pesticide, industrial compound, and/or environmental 
contaminate present within the edible tissue of live poultry.  The U.S. Department of Agriculture 
(USDA), Food Safety and Inspection Service (FSIS) monitors poultry products for the presence 
of chemical residues as part of its National Residue Program.  Table C-1 lists monitoring results 
from the 2003 National Residue Program. 
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65 Table C-1.  National Residue Program Domestic Data (USDA, FSIS, OPHS, 2003) 

Sulfonamides Arsenicals 
Chlorinated 

Hydrocarbons 
Avermectins & 
Milbemycins 

 N P V N P V N P V N P V 
Young Chicken 385   1,087 579  476      
Mature Chicken 97 1  202 5  221 1     
Young Turkey 234   502 4  249 1     
Mature Turkey 234 2  97 1 1 214 5     
Ducks 95   336  1 248      
Geese 17   13   15      
Squab 20      22      
Ratite 5      10 5  7   
N = number of analyses, P = number of non-violative positives, V = number of violations 
 

Controls.  Biological and chemical potential risk factors present in or on live poultry received 
onto the official premise cannot be prevented, eliminated, or reduced to acceptable levels during 
live receiving or live hanging.  However, they can be reduced through preharvest interventions. 
Berrang et al. demonstrated that when the level of microorganisms on live poultry at live 
receiving is high, the presence of microorganisms on raw product is high, and visa versa. 
Fluckey et al. (2003) found that the incidence of Salmonella and Campylobacter on the farm 
correlates with Salmonella and Campylobacter incidence during evisceration.  Campbell et 
al. (1982) reported a 9 percent post-evisceration incidence of Salmonella from Salmonella-free 
turkey flocks compared to 20 percent from non-Salmonella-free flocks.  Producers can eliminate 
chemical potential risk factors through pre-harvest interventions that control pharmaceutical and 
chemical usage. 
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The National Chicken Council (NCC) (1992) and the National Turkey Federation (NTF) (2004) 
recommend that poultry producers implement pre-harvest sanitation and production practices 
shown to reduce hazards in edible poultry products.  They recommend microbiological standards 
for feeds.  Davies et al. (2001) and Corry et al. (2002) traced Salmonella serotypes recovered 
from the farm and during transportation back to the feed mills. 
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The NCC and NTF also recommend bio-security, maintenance, and sanitation programs for 
facilities and equipment to reduce pathogenic and nonpathogenic microorganisms in/on live 
poultry prior to live receiving.  Davies and Wray
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  (1996) identified rodents and faulty application 
of disinfectants as causes for the persistence of Salmonella in growing houses.  Herman et al. 
(2003) identified employee clothing as the source of Campylobacter-positive flocks.  Evans and 
Sayers (2000) identified important factors for preventing Campylobacter infection in a flock 
including buildings in good repair, boot dips, high standards of cleaning, and disinfecting 
drinking water.  Higgens et al. (1981) demonstrated that failure to clean and disinfect air inlets 
and fans contributed to recontamination of facilities with Salmonella.  The microbial 
composition of the air in a high-throughput chicken slaughtering facility was examined by 
sampling various areas.  It was found that the highest counts of microorganisms were recorded in 
the initial stages of processing, comprising the receiving-killing and defeathering areas, whereas 
counts decreased toward the evisceration, air-chilling, packaging, and dispatch areas (Lues et 
al. 2007).  Rose et al. (2000) identified the lack of cleaning and disinfection between flocks as a 
significant risk factor for the persistence of Salmonella.  Corry et al. (2002) and Slader et 
al. 2002) linked failure to clean and sanitize transport crates with Campylobacter- and 
Salmonella-positive poultry being received onto the official premise during live receiving. 

The NCC and NTF further suggest proper feed and water withdrawal to minimize fecal and 
ingesta contamination during processing.  Wabeck (1972) recommended taking broilers off feed 
and water 8 to 10 hours prior to slaughter.  Bilgili (1988) found that decreasing feed withdrawal 
times increased the likelihood of gastrointestinal breakage during processing.  Northcutt et 
al. (2003) determined that increasing feed withdrawal to 12 hours increased Campylobacter and 
Salmonella levels in post carcass rinses 0.4 log10 CFU/ml and 0.2 log10 colony forming unit 
(CFU)/milliliter (ml), respectively.  Bilgili and Hess (1997) found that feed withdrawal periods 
≥14 hours increased intestine and gallbladder fragility, which increased fecal and bile 
contamination during evisceration.  Hinton et al. (2000, 2002) found that providing broilers with 
a 7.5 percent glucose solution or a sucrose solution during feed withdrawal decreased the crop 
pH, increased the level of lactobacillus, and decreased the incidence of Salmonella typhimurium 
in the crop during feed withdrawal (p<0.05).  Line et al. (1997) found that feeding 
Saccharomyces boulardii, a non-pathogenic yeast, to broilers during feed withdrawal reduced the 
incidence of Salmonella in the cecum during to crating and transport.  Acidifying the drinking 
water at the time of feed withdrawal may help also to reduce levels of Salmonella in incoming 
birds.  Byrd et al. (2001) found that administering organic acids at the time of feed withdrawal 
maintained a more acidic pH in the crop and provided birds with an alternative to consuming 
potentially contaminated litter.  Offering birds an organic acid in the water significantly lowered 
post-harvest crop contamination with Salmonella (p
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<0.001) and Campylobacter (p<0.001).  This 
type of treatment could be a cost-effective approach that does not require radical changes in 
current management practices.  Byrd et al. (2003) suggested that sodium chlorate added to the 
water at the time of feed withdrawal could significantly reduce levels of Salmonella in the crop 
and ceca. 
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Feed withdrawal may, however, affect the intestinal integrity, due to depletion of intestinal 
mucus (Thompson and Applegate 2006) as well as reduction of digestive tract mass (Nijdam et 
al. 2006), which can increase susceptibility to infection.  Recent studies suggested that special 
diets could be a good substitute for the feed withdrawal period held before transportation to the 
processing plant.  Special diets that show favorable results include semi-synthetic feed with high 
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carbohydrate concentration (Delezie et al. 2006) or a commercial whole wheat diet (Rathgeber et 
al. 2007).  Alternatively, a commercial whole wheat diet fed prior to feed withdrawal eliminated 
the deleterious effects on gut weight and content (Delezie et al. 2006). 
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In addition to biosecurity measures, producers have other means of reducing Salmonella in 
poultry flocks.  Vaccinations, especially those against S. enteritidis, reduce shedding of the 
organism in the intestine as well as in organs including the ovaries, theoretically decreasing the 
contamination of subsequently laid eggs (Davison et al. 1999). Reducing intestinal colonization 
and, consequently, fecal shedding of S. enteritidis could provide two-fold protection by reducing 
both vertical and horizontal transmission (Gast et al. 1993).  After infection with S. enterica 
serovars typhimurium or enteritidis, the high titers of Salmonella-specific antibodies achieved 
has been shown to demonstrate a high degree of cross-reactivity against other serovars (Beal and 
Smith 2007).  Furthermore, live attenuated vaccines given to very young chicks have been shown 
to provide protection through the “colonization-inhibition effect.”  Because a chick’s gut is 
devoid of microbial flora, there is extensive multiplication by the vaccine, making it difficult for 
pathogenic organizations to become established (Barber et al. 1999).  Autogenous bacterins are 
important interventions, and the poultry industry has petitioned the Animal Plant Inspection 
Service (APHIS) to rewrite the regulations to allow the use of autogenous vaccines. 

Prebiotics and probiotics are established treatment alternatives for reducing Salmonella in 
poultry.  Gibson and Roberfroid (1995) define prebiotics as “a non-digestible food ingredient 
that beneficially affects the host by selectively stimulating the growth and/or activity of one of a 
limited number of bacteria in the colon.”  Fuller (1989) defines probiotics as “live microbial feed 
supplements which beneficially affect the host animal by improving its intestinal balance.”  It is 
believed that prebiotics and probiotics act as dietary resources that might be instrumental in 
stabilizing gut flora, as well as helping to prevent pathogenic organisms from colonizing the gut 
and causing disease (Holzapfel et al. 1998).  Tellez et al. (2001) found that significantly less 
Salmonella enteritidis was isolated from the cecum and tissue organs in birds treated with an 
Avian Pac Plus® that contained probiotics and egg-source antibodies for S. enteritidis, 
S. typhimurium, and S. heidleberg, as compared to untreated controls.  Netherwood et al. (1999) 
found that once probiotics were discontinued, the microflora returned to levels found in untreated 
controls, suggesting that probiotics do not become established in the gut and continued use is 
required. 

Other interventions that show promise are yet to be implemented.  As the potential risk factor 
over antibiotic resistance increases, there has been renewed interest in exploiting the antibacterial 
properties of bacteriophages and bacteriocins.  More effective vaccines may eventually come 
marketed within bacterial ghosts.  Richardson et al. (2003) experimented with electric space 
charges as a means of reducing airborne transmission of bacterial pathogens.  The poultry 
industry has continued interest in using undefined competitive exclusion (CE) products.  Because 
undefined CE products make therapeutic claims, the Food and Drug Administration (FDA) 
classifies them as drugs.  Since the FDA does not recognize these products as either safe or 
effective, it has labeled them as unapproved new drugs.  The FDA did approve a defined CE 
product, PREMPT®, which has since been removed from the market.  A recent study which 
included 118 commercial turkey hen lots, ranging from 1,542 to 30,390 hens per lot, of either 
Nicholas or Hybrid genetic lines was conducted to look at the effect of a selected commercial 
Lactobacillus-based probiotic (FM-B11) on turkey body weight, performance, and health.  When 
each premise was compared by level of performance as good, fair, or poor (grouping based on 
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historical analysis of 5 previous flocks), the probiotic appeared to increase the performance of 
the poor and fair farms (p
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<0.05) (Torres-Rodriguez et al. 2007). 173 
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Of the interventions discussed, not one alone is capable of eliminating pathogens.  Interventions 
vary in their effectiveness for both researchers and producers.  Some appear to have synergistic 
effects when used in combination.  More research and application is needed to resolve these 
issues. 

Immobilization and Exsanguination (Bleeding) 

Immobilization renders live poultry unconscious in preparation for exsanguination (bleeding); 
however, death by slaughter can occur unintentionally or by design.  Immobilization begins 
when the immobilizing agent is applied and ends when the cervical vessels are severed.  
Immobilization methods are classified as mechanical, chemical, and electrical, and should be 
implemented in accordance with good commercial practices in a manner that will result in 
thorough bleeding of the carcasses. 

Mechanical immobilization is impractical in large poultry establishments.  However, it is useful 
in emergencies or to immobilize small numbers of live poultry, which makes it a practical 
method in small and very small establishments.  Decapitation, cervical dislocation, and blunt 
trauma to the head are the most common forms of mechanical immobilization. 

Chemical immobilization exposes live poultry to a gas, individually in boxes or tunnels, or in 
batches.  The most common gases are carbon dioxide (CO2) (Drewniak et al. 1955, Kotula et 
al. 1961) and argon (Raj and Gregory 1990, 1994).  When chemical methods are used, live 
poultry may be immobilized prior to live hanging. 

Electrical immobilization is the most common method in use worldwide.  It is the best method of 
achieving rapid brain failure and the cheapest and most effective method of poultry slaughter. 
The EEC recommends electrical immobilization with a minimum of 120 milliampere (mA) to 
instantaneous render poultry unconscious, effect ventricular fibrillation, and produce death by 
slaughter (Fletcher 1999).  A majority of U.S. poultry processors utilize low-voltage, 
high-frequency methods (Fletcher 1999, Heath et al. 1994).  The remaining U.S. processors 
utilize high voltage with no specified waveform.  Gregory and Wooton (1986) determined that 
low-voltage immobilization with 30 to 60 volts (V), 20 to 45 mA does not result in death by 
slaughter, while high-voltage stunning with 150 V, 100 mA induces ventricular fibrillation and 
death by slaughter.  Both systems accomplish the desired end result.  Kuenzel et al. (1978) 
determined that 50 V/60 hertz (Hz) circuits are 35 percent more cost-effective than 100 V 
variable-frequency circuits, and 225 percent more cost-effective than direct current (DC) circuits. 
However, Kuenzel and Walther (1978) concluded that DC currents are safer and improve 
exsanguination time compared to alternating current (AC) circuits because blood is not shunted 
from peripheral to central blood vessels.  A recent study examined different slaughter techniques 
to determine their effects on pH (24 hours), color (24 hours), lipid oxidation, residual 
hemoglobin concentration (24 hours), and sensory evaluation (d 1 and 4 post mortem) in broiler 
breast fillets, and concluded that the electrical stunning and decapitation method had the most 
favorable results for sensory quality regardless of whether the chickens were pre-bled 
(Alvarado et al. 2007). 
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Exsanguination guarantees death by slaughter and ensures that poultry have stopped breathing 
prior to scalding.  Exsanguination begins when the cervical vessels are severed, and ends when 
the carcass enters the scald process.  For exsanguination to cause death by slaughter, it is 
important that the cervical vessels be cut promptly and efficiently so that poultry do not regain 
consciousness and/or enter the scald tank before they have stopped breathing. 
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Potential Risk Factors. Potential biological risk factors include cross-contamination with 
pathogenic and nonpathogenic microorganisms.  Immobilization (Mead et al. 1994) can void 
feces and further contaminate the carcass exterior, scald tank water, and feather removal 
equipment.  Papa and Dickens (1989) found that 53 percent of broilers produced an average 
excretion of 1.5 g during electrical immobilization and that the volume of the excretion increased 
as feed withdrawal time increased. Musgrove et al. (1997) found that Campylobacter in whole 
carcasses rinses increased 0.5 log10 CFU/ml following electrical immobilization.  Mead et al. 
(1994) found that the physical pressure of the killing knife against the carcass can void crop 
content with similar affect. 

Trim nonconformance is an undesirable side effect of immobilization.  Raj (1994) and Raj et 
al. (1990) identified a link between electrical and chemical immobilization and hemorrhage and 
broken bones in turkeys and broilers.  Chemical immobilization results in a lower incidence of 
trim nonconformance compared to electrical immobilization (Raj and Nute 1995, Raj et al. 1997, 
1998).  Grossly significant hemorrhages can interfere with accurate post mortem disposition. 

Failure to properly exsanguinate can result in poultry entering the scald tank before breathing has 
stopped.  Heath et al. (1981) speculated that red discoloration of the skin results when live 
poultry enter the scald tank.  Heath et al. (1983) later concluded that poultry entering the scald 
tank alive develop red discoloration of the skin, that the discoloration is confined to the pterylae, 
and that the apteria is never discolored.  Griffiths (1985) demonstrated that only poultry entering 
the scald tank alive result in red discoloration of the skin.  Poultry that are dead (either by 
slaughter or by other causes) when they enter the scald tank, do not develop in red discoloration 
of the skin.  Griffiths further demonstrated that the red discoloration is due to marked peripheral 
vascular dilation of blood vessels in the skin and subcutis. 

Controls.  Biological and chemical potential risk factors present during immobilization and 
exsanguination cannot be prevented, eliminated, or reduced to acceptable levels during these 
process steps.  However, they can be influenced through preharvest interventions and choice of 
processing method. 

Feed withdrawal time influences the incidence of feces voided during immobilization.  Papa and 
Dickens (1989) found that only 8 percent, 42 percent, 50 percent, and 58 percent of broilers 
produced an excretion when the feed withdrawal time was 4, 8, 12, and 16 hours, respectively. 
McNeal et al. (2003) found that exsanguination by decapitation following electrical 
immobilization produced less wing flapping, body motion, and quivering because decapitation 
kills poultry quicker than severance of the cervical vessels.
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Scalding 251 
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Scalding begins when the poultry carcass enters the scald system and ends when feather removal 
commences.  Scalding prepares the carcass for feather removal by breaking down the proteins 
that hold feathers in place and opening up feather follicles. 

Variables requiring consideration during the scald process step are mechanical, physical, and 
chemical.  Mechanical variables include counter-current flows and agitation to produce a 
washing effect.  Counter-current systems move water counter to the direction of poultry 
carcasses at all points.  Water enters the system at the point where poultry carcasses exit, and 
water exits at the point where poultry carcasses enter, producing a dirty-to-clean gradient that 
continually moves poultry carcasses into cleaner water.  Cleaner water is a relative condition as 
the amount of dry matter and microorganisms in the scald water increase over time.  Physical 
variables are time and temperature, which influence washing and antimicrobial effects.  The 
chemical variable is pH, which also influences the antimicrobial effect. 

Immersion scalding is the most common scald technology in use and is best described as 
dragging carcasses through a tank of hot water. Immersion systems come in single- and multi-
stage configurations, incorporating mechanical and physical variables. Single-stage systems 
provide less washing effect than multi-stage systems. 

U.S. Poultry processors in the United States prefer a “hard scald” combining shorter scald times 
and higher scald temperatures.  A “hard scald” facilitates removal of the epidermis, which 
enhances the adhesion of coatings commonly used with fried foods.  European poultry 
processors prefer a “soft scald,” combining longer scald times and lower scald temperatures.  A 
“soft scald” retains much of the epidermis and natural skin color. 

Table C-2.  Common Scalding Times and Temperature for Various Classes of Poultry 
Broilers (hard scald) 30-75 seconds 59-64°C 
Broilers (soft scald) 90-120 seconds 51-54°C 

Turkeys 50-125 seconds 59-63°C 
Quail 30 seconds 53°C 

Waterfowl 30-60 seconds 68-82°C 
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Steam-spray scalding is a less popular alternative.  Klose et al. (1971), Kaufman et al. (1972), 
and Dickens (1989) found that a mixture of steam and air at 50 to 60°C and 137.9 kPa pressure 
applied for approximately two minutes provided a uniform scald of either dry or damp broilers, 
facilitated feather removal, and yielded carcasses microbiologically equivalent to immersion 
systems. Some religious dietary laws prohibit scalding and soak poultry carcasses in cold water. 

Potential Risk Factors.  Potential biological risk factors include pathogenic and non-pathogenic 
microorganisms introduced during the scald process.  These microorganisms are present on the 
internal and external surfaces of the carcass as well as in the scald water. 

Salmonella and Campylobacter are the most common pathogenic microorganisms identified with 
the scalding process step.  Berrang et al. (2000a) recovered 5.4 log10, 3.8 log10, 4.7 log10, 
7.3 log10, and 7.2 log10 Campylobacter/g from feathers, skin, crop content, cecal content, and 
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colon content, respectively, prior to scalding.  Geornaras et al. (1997) isolated Salmonella from 
100 percent, Listeria spp., from 33 percent, and Staphylococcus aureus from 20 percent of skin 
and feather samples collected prior to scalding.  Cason et al. (2000) found that 75 percent of 
scald tank water samples were Salmonella-positive, and recovered an average of 10.9 MPN 
Salmonella/100 ml, or about 1 Salmonella bacteria/9 ml.  They found significantly lower 
prevalence of microorganisms with increasing passes between tanks, but removal of coliforms 
and E. coli is more effective (p
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<0.02) than removal of Salmonella.  Wempe et al. (1983) 
recovered an average of 1.6 log
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10 C. jejuni CFU/ml from a scald tank water. 

Because scalding washes much of the dirt and feces off of the carcass exterior, more 
microorganisms can be removed during scalding than during any other process step.  Geornaras 
et al. (1997) found a 38 percent decrease in Salmonella-positive carcasses.  Acuff et al. (1986) 
reported a 312 MPN/100 cm3 decrease in C. jejuni on turkey skin.  Berrang and Dickens (2000) 
reported a 2.9- to 4.1-log10 reduction in Campylobacter/ml in carcass rinses.  Lillard (1990) 
found a 1.1-log10 and 1.5-log10 CFU/ml decrease in aerobic bacteria and Enterobacteriaceae, 
respectively, in carcass rinses.  Geornaras et al. (1997) found a 1.0-log10 CFU/g decrease in 
Pseudomonas spp. in skin samples.  Berrang and Dickens (2000) reported 2.1-log10 and 
2.2-log10 CFU/ml reductions in coliforms and E. coli, respectively in carcass rinses. 

However, Berrang et al. (2003a) found that immersion scalding increased aerobic bacteria 
0.9 log10 CFU/ml, coliforms 0.8 log10 CFU/ml, E. coli 1.5 log10 CFU/ml, and Campylobacter 
spp., 0.8 log10 CFU/ml in lung rinses taken from broilers, indicating that microorganisms were 
added to the respiratory tract during immersion scalding.  These microorganisms carry forward 
into subsequent processing steps.  In contrast, Kaufman et al. (1972) found that the air sacs of 
steam-scalded broilers contain 3 log10 fewer microorganisms than the air sacs of immersion-
scalded broilers.  The number of microorganisms on poultry carcasses exiting the scald tank is 
relative to the number of microorganisms in or on the poultry carcass entering the scald tank.  
The scald process cannot eliminate excessively high numbers of microorganisms entering the 
process. 

A disadvantage of washing dirt and feces off of the exterior carcass surface is the accumulation 
of microorganisms in the scald water, making the scald tank a source of cross-contamination for 
subsequent carcasses.  Mulder et al. (1978) recovered a marker organism introduced prior to 
scalding from the 230th carcass exiting the scald. Cason et al. (1999) determined that the 4.2 log10 
aerobic bacteria/ml, 2.7 log10 E. coli/ml, and 2.9 log10 Campylobacter/ml of carcass rinse present 
on carcasses post-feather removal originated from the scald process. 

Figure C-1 illustrates the reduction in microorganisms that occurs during the immersion 
scalding process step. For each microorganism considered, Berrang and Dickens (2000) and 
Berrang et al. (2003a) measured a reduction in the mean log10 CFU/ml of whole carcass rinse 
taken from broiler carcasses pre- and post-immersion scalding (p<0.05 for all of the organisms 
tested). 
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Figure C-1.  Difference in Levels of Organisms Pre- and Post-scaling 
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Chemical potential risk factors include residues introduced during the scald process through the 
excessive application of technical processing aids and/or antimicrobial agents.  Technical 
processing aids enhance the scalding process and include surfactants, denuding agents, and 
emollients.  Surfactants reduce surface tension, improve wetting agent function, and inhibit 
foam.  Alkaline denuding agents loosen the keratinized outer layer of the epidermis.  Emollients 
retain moisture and prevent excessive drying of the denuded dermis.  Many of these chemicals 
are generally regarded as safe (GRAS) by the FDA.  Others are listed with restriction in the Code 
of Federal Regulations, 9 CFR 424.21, “Use of Food Ingredients and Sources of Radiation.”  
When a processing aid produces the same technical effect at lower scald water temperatures, a 
greater number of microorganisms can survive the scald process. 

Controls.  Biological and chemical potential risk factors cannot be prevented or eliminated 
during the scald process step; however, they can be reduced. 

The NCC (1992) and Waldroup et al. (1992) identified counter current systems, sufficient water 
replacement with, and a post-scald carcass rinse as good manufacturing practices for efficient 
immersion scalding. Waldroup et al. (1993) found that counter current scalding reduced aerobic 
bacteria, coliform, and E. coli 0.64 log10, 0.76 log10, and 0.72 log10 CFU/ml, respectively, and 
Salmonella prevalence by 10 percent in scald water.  James et al. (1993) found that counter-
current scalding combined with a carcass rinse reduced aerobic bacteria, Enterobacteriaceae, and 
E. coli 0.68 log10, 0.37 log10, and 0.08 log10 CFU/carcass respectively, and the incidence of 
Salmonella-positive carcasses by 3 percent.  Multi-tank immersion systems further improve the 
microbiological quality of the scald water.  In a three-stage counter current system, Cason et al. 
(2000) reported a reduction in coliforms from 3.4 log10 to 2.0 log10 to 1.2 log10 CFU/ml, and in 
E. coli from 3.2 log10 to 1.5 log10 to 0.8 log10 CFU/ml in tanks 1, 2, and 3, respectively (p<0.05). 
Cox et al. (1974) determined that 1 minute of agitation reduced aerobic bacteria on broiler skin 
by 0.42 log

348 
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10 CFU/cm2. 

Failure to maintain a proper time/temperature combination diminishes the desired technical 
effect of preparing feathers for removal and detracts from sanitary dressing.  High scald 
temperature can cause the carcass to become oily, which favors the retention of microorganisms 
on the carcass surface.  Cox et al. (1974) determined that immersion in hot water for 1 minute 
reduced aerobic bacteria 0.91 log10 CFU/cm2.  Yang et al. (2001) found that a 5-minute exposure 
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at 50 to 60°C produced reductions of 3.8 log10 C. jejuni/ml and 3.0 log10 S. typhimurium/ml in 
the scald tank water, and 1.5 log
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10 C. jejuni/ml and 1.3 log10 S. typhimurium/ml on chicken skins. 

Immersion scalding produces a relatively smooth, microbiologically superior skin surface 
compared to steam-spray and kosher methods that result in a highly wrinkled microtopography 
that facilitates attachment of microorganisms.  Kim and Doores (1993) concluded that the 
incidence of Salmonella-positive turkey carcasses is higher with kosher processing, due to 
trapping of Salmonella in the keratinized epithelium.  Lillard (1989) concluded that 
microorganisms become entrapped in ridges and crevices that become more pronounced in skin 
following immersion in water and are less accessible to antimicrobial treatments.  Clouser et 
al. (1995b) recovered Salmonella from 57 percent of steam-spray and 37 percent of kosher skin 
samples, compared to 23 percent with conventional methods. 

Within 120 minutes of the start of operations, the dissociation of ammonium urate from poultry 
feces to uric acid and ammonium hydroxide can reduce scald water pH from 8.4 to 6.0 
(Humphrey 1981).  The protein and minerals in the scald tank water then act as a buffer to 
maintain this pH for the rest of the working day.  S. typhimurium and S. newport are most heat 
resistant at pH 6.1 (Okrend et al. 1986), C. jejuni at 7.0 (Humphrey  and Lanning 1987), 
Aerobacter aerogenes at pH 6.6 (Strange and Shon 1964), and Streptococcus feacalis at pH 6.6 
(White 1963).  Hydrogen ion concentration influences the rate of endogenous Ribonucleic acid 
(RNA) degradation and a shift in pH away from optimal (while probably not the primary cause 
of microbial death in scald water) increases RNA degradation, hinders microbial metabolism, 
and contributes to microbial death. 

Increasing scald water pH reduces microbial levels in the water.  When scald water pH was 
increased from 7 to 9, Humphrey and Lanning (1987) determined that the time needed to achieve 
a 1-log10 reduction in C. jejuni was reduced from 11½ to 2 minutes, Salmonella levels were 
reduced from 13.9 MPN/100 ml to 3 MPN/100 ml, and the incidence of Salmonella- and 
Campylobacter-positive water samples from 100 percent to 26 percent.  When scald water pH 
was adjusted to 9 after 4 hours of production and maintained for the remainder of the day, 
Humphrey et al. (1984) determined that aerobic bacteria and Enterobacteriaceae levels decreased 
by 0.4 log10 CFU/ml and 0.5 log10 CFU/ml, respectively; and the death rate of Salmonella 
typhimurium attached to the skin increased 57 percent.  Lillard et al. (1987) reported that 
reducing scald water pH to 3.6 by the addition of 0.5 percent acetic acid decreased aerobic 
bacteria 2.2 log10 CFU/ml in scald water. 

The same can be said for decreasing scald water pH. Okrend et al. (1986) determined that 
reducing scald tank water pH to 4.3 by the addition of 0.1 percent acetic acid increased the death 
rate of S. newport and S. typhimurium 91 percent.  However, the same is not true for 
microorganisms on the surface of poultry carcasses.  Humphrey and Lanning (1987) reported 
that scalding at pH 9.0 had no affect on the incidence of Salmonella and Campylobacter on 
broiler carcasses.  Lillard et al. (1987) found that reducing scald water pH to 3.6 did not reduce 
aerobic bacteria or Enterobacteriaceae on carcass surfaces.  It is important to understand that 
these reductions take place in the scald tank water and not on the carcass surface.  
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Feather Removal 396 
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Feather removal eliminates the feathers and stratum corneum in preparation for evisceration. 
Feather removal begins when carcasses enter the feather removal equipment and continues until 
the exterior surface of the poultry carcass is free of feathers and cuticle.  Feather removal 
technology is fairly uniform across the poultry industry.  Carcasses pass through one or more 
pieces of equipment that remove feathers by the mechanical action of rubber picking fingers 
beating against the carcass.  Most establishments utilize a continuous process; however, batch 
processes are common in small, low-volume establishments.  Some very small establishments 
rely on manual methods to remove feathers.  Following mechanical feather removal, goose 
carcasses are immersed in molten wax and dipped in ice water to facilitate removal of the down 
feathers. The hardened wax is manually removed, taking the down feathers with it. 

Potential Risk Factors 

Potential biological risk factors include pathogenic and nonpathogenic microorganisms 
introduced during the feather removal process.  These microorganisms are present on the internal 
and external surfaces of the carcass, as well as on the feather removal equipment, and increase as 
an unavoidable consequence of the process.  Salmonella and Campylobacter are the most 
common pathological microorganisms identified with the feather removal process.  Acuff et al. 
(1986) determined that regardless of the number of C. jejuni present on turkey carcasses entering 
the establishment, on average, C. jejuni increased 150 MPN/100 cm3 during feather removal.  
Izat et al  (1988) found that feather removal increased C. jejuni on broiler carcasses 
1.7 log10 CFU/1,000 cm3.  Abu-Ruwaida et al. (1994) reported that Campylobacter and S. aureus 
levels rose 1.6 log10 CFU/gm and 0.30 log10 CFU/gm, respectively, and the incidence of 
Salmonella was 100 percent post-feather removal.  Berrang and Dickens (2000) found that 
Campylobacter, in whole carcass rinses increased 1.9 to 2.9 log10 CFU/ml and that Salmonella 
(Berrang et al. 2001) on breast swabs increased 1.2 log10 CFU/cm3. 

Clouser et al. (1995a) found a >200 percent increase in Salmonella-positive turkey carcasses 
after feather removal, and concluded that when Salmonella is present prior to feather removal, 
the incidence of Salmonella tends to increase throughout evisceration and chilling.  Geornaras et 
al. (1997) isolated Salmonella from 100 percent of carcasses following feather removal.  The 
feather follicle has been implicated as a harborage for microorganisms.  However, Cason et al. 
(2004) found no statistically significant difference (p>0.05) in aerobic bacteria, E. coli, and 
Campylobacter levels between feathered and featherless birds and concluded that microbial 
adhesion, not harborage in follicles, is the mechanism behind microorganisms present on poultry 
skin. 

Figure C-2 summarizes data compiled from various authors cited in this document and 
illustrates the increase in biological potential risk factors during feather removal. 
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Difference in Levels of Microorganisms between Scalding and 
Feather Removal Process Steps
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Figure C-2.  Difference in Levels of Microorganisms between Scalding and 
Feather Removal Process Steps 

Within the feather removal equipment, the rubber picking fingers and recycled water are sources 
of cross-contamination.  Geornaras et al. (1997) isolated Salmonella from 33 percent of the 
picking fingers.  Wempe et al. (1983) recovered an average of 3.88 log10 C. jejuni/ml from 
94 percent of feather removal water samples.  Whittemore and Lyon (1994) recovered 5.46 to 
5.73 log10 Staphylococcus spp., 5.83 to 6.04 log10 aerobic bacteria, and 5.05-5.44 log10 
Enterobacteriaceae from the rubber picking fingers.  Mead et al. (1975) and Allen et al. (2003b) 
found that a marker organism inoculated onto post-scalding carcasses dispersed for 
≤200 carcasses via feather removal.  Mulder et al. (1978) found that a marker organism 
introduced prior to feather removal could be recovered from the 580th carcass exiting the feather 
removal equipment.  Geornaras et al. (1997) attributed increases of 1.1 log10 aerobic bacteria/g, 
0.9 log10 Enterobacteriaceae/g, and 3.1 log10 Pseudomonas spp./g in neck skin samples following 
feather removal to the action of the rubber picking fingers. 

Allen et al. (2003a) concluded that feces forced out of the cloaca by the action of picking fingers 
against the carcass cross-contaminated adjacent carcasses.  Berrang et al. (2001) found that the 
incidence of Campylobacter-positive carcass rinses decreased 89 percent and Campylobacter 
levels decreased 2.5 log10 CFU/ml when the escape of feces from the cloaca was prevented. Buhr 
et al. (2003) confirmed the result, finding that plugging the cloaca decreased Campylobacter, 
coliforms, E. coli, and aerobic bacteria 0.7 log10, 1.8 log10, 1.7 log10, and 0.5 log10 CFU/ml, 
respectively, in rinse samples. 

A clear demonstration for the role of fingers in cross contamination was shown by means of 
molecular characterization.  Salmonella subtypes found on the fingers of the picker machines 
were similar to subtypes isolated before and after defeathering, indicating that the fingers 
facilitate carcass cross contamination during defeathering (Nde et al. 2007).  Similar conclusions 
were made for cross contamination of Campylobacter spp., using molecular profiling (Takahashi 
et al. 2006) in a poultry plant in Japan. 

Airborne microorganisms have been implicated as a source of cross-contamination during 
feather removal.  Whyte et al. (2001a) recovered 12.7 log10 Campylobacter per 15 ft3 of air in 
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broiler and hen establishments.  Northcutt et al. (2004) recovered 1.5 log10 Enterobacteriaceae/ml 
of air during commercial processing of Japanese quail.  Lutgring et al. (1997) recovered 2.5 to 
6 log
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10 psychrophilic bacteria/m3 in turkey and duck processing establishments.  However, 
Berrang et al. (2004) found that exposing Campylobacter-negative broiler carcasses to air near 
feather removal equipment for 1 minute only increased Campylobacter 0.20 log10 CFU/ml in 
carcass rinses, and concluded that airborne contamination does not contribute to high levels of 
Campylobacter routinely found on broiler carcasses after feather removal (95 percent CI). 

Controls.  Biological hazards and potential risk factors cannot be prevented, eliminated, or 
reduced to acceptable levels during feather removal. 

The NCC (1992) and Waldroup et al. (1992) recommend preventing feather buildup, continuous 
rinses for equipment and carcasses, and regular equipment adjustment to minimize cross-
contamination. 

Changes in technique and/or equipment can affect microbial numbers on equipment and product. 
After increasing the number of rubber feather removal fingers, decreasing chlorine levels, and 
increasing cabinet temperature, Purdy et al. (1988) found that S. aureus, coliforms, and 
Enterobacteriaceae on the feather removal fingers increased by 3.2 log10 CFU, 2.0 log10 CFU, and 
4.6 log10 CFU, respectively, and S. aureus, coliforms, and Enterobacteriaceae on the poultry skin 
samples increased by 2.8 log10 CFU, 5.0 log10 CFU, and 5.6 log10 CFU, respectively.  Allen et al. 
(2003a) determined that increasing the distance between carcasses and water curtains at the 
entrance and/or exit of the feather removal cabinet had no effect on cross-contamination.  
Clouser et al. (1995a) concluded that when aerobic plate counts are high at the start of feather 
removal, they remain proportionately high throughout processing. 

Interventions applied during feather removal have yielded mixed results.  Berrang et al. (2000b) 
concluded that rinsing carcasses with 71°C (159°F) water for 20 seconds post-feather removal 
spraying had no significant effect on microbial contamination.  Mead et al. (1975) found that a 
10 to 20 ppm available chlorine carcass rinse did not reduce carriage of a marker organism on 
turkey carcasses passing through the feather removal equipment and contributed the result to 
inadequate contact time.  Later, Mead et al. (1994) found that an 18 to 30 parts per million (ppm) 
available chlorine rinse reduced carriage of a marker organism on hen carcasses passing through 
the feather removal equipment.  Dickens and Whittemore (1997) found that a 1 percent acetic 
acid rinse post-feather removal reduced aerobic bacteria 0.6 log10 CFU/ml in whole carcass rinse 
without altering carcass appearance; but a similar application of 0.5 percent to 1.5 percent 
hydrogen peroxide caused bleaching and bloating of carcasses. 

Evisceration 

Evisceration removes the internal organs and any trim/processing defects from the carcass in 
preparation for chilling.  The technology varies widely across the poultry industry but always 
includes the following basic process steps. 

• Remove the crus. 
• Remove the oil gland. 
• Sever the attachments to the vent. 
• Open the body cavity. 
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• Extract the viscera. 503 
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• Harvest the giblets. 
• Remove and discard the intestinal tract and air sacs. 
• Remove and discard the trachea and crop. 
• Remove and discard the lungs. 

Potential Risk Factors 

Potential chemical risk factors include antimicrobial treatments, as well as sanitizers, used to 
prevent cross-contamination and control microbial growth on product contact surfaces. 
Biological potential risk factors include pathogenic and nonpathogenic microorganisms on 
carcasses and equipment surfaces. 

The incidence of biological potential risk factors on carcasses and equipment, as well as the 
change in absolute numbers, varies widely between poultry processing operations.  Hargis et al. 
(1995) recovered Salmonella from 15 percent of ceca and 52 percent of crops; and 8 percent of 
crop removal devices.  Byrd et al. (1998) recovered Campylobacter from 4 percent of ceca and 
62 percent of crops.  Berrang et al. (2003a) recovered 1.0 log10 Campylobacter/ml of rinse from 
lungs.  Lillard (1990) found that the incidence of Salmonella-positive carcasses increased 
2.4 percent during evisceration.  Oosterom et al. (1983) found an increase of 1.5 log10 C. jejuni/g 
of skin and 7.0 log10 C. jejuni/g from intestinal content during evisceration.  Acuff et al. (1986) 
found that C. jejuni increased 278 MPN/100 cm3 during evisceration.  Izat et al. (1988) found 
that evisceration increased C. jejuni 0.41 log10/1,000 cm3 on skin samples.  Berrang and 
Dickens (2000) found a 0.3-log10 decrease in Campylobacter/ml in carcass rinses during 
evisceration.  Berrang et al. (2003a) found that aerobic bacteria, coliforms, E. coli, and 
Campylobacter in carcass rinses decreased 0.5 log10, 0.3 log10, 0.67 log10, and 0.3 log10 CFU/ml, 
repectively, during evisceration.  Lillard (1990) found that evisceration decreased aerobic 
bacteria and Enterobacteriaceae 0.61 log10 and 0.18 log10 CFU/ml, respectively.  Variations in 
the number of microorganisms recovered from carcasses and equipment are attributable to the 
differences in the processing and sanitation practices. 

Carcass handling during evisceration cross-contaminates product prior to opening the body 
cavity and after extracting the viscera.  Mead et al. (1975, 1994) recovered a marker organism 
from the 50th revolution of the transfer point, the 450th carcass to pass through the vent opener, 
and from head removal and lung extraction machines.  Byrd et al. (2002) recovered a marker 
organism placed in the crops prior to live hanging from 67 percent of carcasses at the transfer 
station, 78 percent at viscera extraction, 92 percent pre-crop removal, 94 percent post-crop 
removal, and 53 percent after the final carcass rinse.  Berrang et al. (2003a) found that the lung 
picks up contaminated water from the scald tank that contaminates equipment and product 
during evisceration.  Wempe et al. (1983) recovered 2.8 log10 C. jejuni/ml from recycled carcass 
rinse water.  Thayer and Walsh (1993) found that aerobic bacteria, Enterobacteriaceae, and 
E. coli on the probe retracting viscera from chicken increased 0.10 to 0.18 log10 CFU during 
operation.  Clouser et al. (1995a) recovered L. monocytogenes from 20 percent of kosher 
carcasses sampled post-evisceration, but found no link with L. monocytogenes preharvest and 
concluded that the L. monocytogenes originated from the equipment. 

The relative presence or absence of enteric microorganisms on carcasses is an indicator of 
sanitation process control.  Jimenez et al. (2003) found that, on carcasses with visible feces, a 
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carcass rinse reduced Enterobacteriaceae.  E. coli, and coliforms by 0.11 log10, 0.10 log10, and 
0.02 log
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10 CFU/ml respectively, and on carcasses without visible feces by 0.36 log10, 0.23 log10, 
and 0.18 log10 CFU/ml, respectively.  Statistical significance was achieved only for the latter 
case (p<0.05).  However, Fluckey et al. (2003) concluded that there is no relationship between 
the presence or absence of enteric microorganisms and the presence or absence of Salmonella or 
Campylobacter (p>0.05).  Lillard (1990) found that a carcass rinse decreased Enterobacteriaceae 
by 0.24 log
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10 CFU/ml, but had no effect on the incidence of Salmonella. 

The presence or absence of visible feces is also an indicator of sanitation process control. 
However, there is no direct correlation between the presence or absence of visible fecal material 
and the presence or absence of Salmonella or Campylobacter.  Jimenez et al. (2002) found that 
12 percent of broiler carcasses with visible fecal contamination were Salmonella-positive, 
compared to 20 percent without visible fecal contamination (p>0.05) and that 37 percent of 
carcasses with visible fecal contamination were Salmonella-positive following the carcass rinse, 
compared to 10 percent without visible fecal contamination.  Fletcher and Craig (1997) found 
that Campylobacter levels on reprocessed carcasses with visible fecal contamination were 
0.21 log10 CFU higher than reprocessed carcasses without visible fecal contamination, and that 
the incidence of Campylobacter and Salmonella on reprocessed carcasses with visible fecal 
contamination was 5 percent and 3 percent lower than on reprocessed carcasses without visible 
fecal contamination.  Blankenship et al. (1975) found no significant difference in the level of 
aerobic bacteria, Enterobacteriacae, and presumptive Clostridium spp., in carcass rinses of 
inspected and passed, fecal-condemned, and reprocessed fecal-condemned broiler carcasses. 
Bilgili et al. (2002) found no correlation between the microbiological quality of broiler carcasses 
and the presence or absence of visible contamination. 

Evisceration systems process steps also influence the incidence of carcass contamination.  
Russell and Walker (1997) found visible contamination on 3 percent of carcasses eviscerated 
with the Nu-Tech® system, compared to 19 perecnt eviscerated with the streamlined inspection 
system.  Jimenez et al. (2003) found feces and/or bile on 11 percent and 5 percent of carcasses 
post-viscera extraction.  Russell and Walker (1997) found feces on 10 percent of carcasses 
post-viscera extraction and 19 percent post-crop removal.  Crop rupture and leakage is a 
significant source of contamination during evisceration.  Buhr and Dickens (2001, 2002) and 
Buhr et al. (2000) determined that crops rupture because of greater adhesion to surrounding 
tissues, and that fewer crops rupture when extracted toward the head compared to extracted 
toward the thoracic inlet (p<0.05). 578 
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Controls.  The NCC (1992) recommends proper feed and water withdrawal, maintenance and 
adjustment of equipment, continuous rinsing and sanitizing, enforcing employee hygiene 
standards, and a whole-carcass rinse with 20 ppm free available chlorine to control biological 
potential risk factors during evisceration.  The most common methods used to mitigate biological 
potential risk factors are carcass rinses, off-line reprocessing, and on-line reprocessing. 

Carcass Rinses 

Carcass rinses are effective interventions for removing loose material from the carcass surface 
during evisceration (Byrd et al. 2002).  Waldroup et al. (1992) recommended a 20 ppm chlorine 
carcass rinse post-evisceration as part of a strategy shown to decrease microbial contamination 
and improve food safety.  Mead et al. (1975) found that a 10 to 20 ppm free available chlorine 
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rinse did not eliminate a marker organism; but, 18 to 30 ppm free available chlorine reduced 
recovery of the marker organism from the 50
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th to the 20th revolution at the transfer point.  
Jimenez et al. (2003) found that carcass rinses reduce visible feces and bile on post-evisceration 
broiler carcasses by 3.4 percent and 2.9 percent, respectively.  Carcass rinses can also reduce 
biological hazards (Notermans et al. 1980).  Notermans et al. (1980) found that the incidence of 
Salmonella positive carcasses decreased 36.5 percent when carcass rinses were incorporated into 
the evisceration process, compared to a 20.5 percent increase without carcass rinses.  However, 
carcasses rinses are not an effective intervention against attached pathogens (Kotula et al. 1967, 
Mead et al. 1975). 

Off-line Reprocessing 

Off-line reprocessing is a manual process and addresses disease conditions and contamination 
that cannot be removed by other means.  When properly performed, off-line reprocessing 
eliminates visible conditions and yields carcasses microbiologically equivalent to inspected and 
passed carcasses (Blankenship et al. 1975); however, reductions in microorganisms are not 
certain.  Blankenship et al. (1993) found the microbiological quality of conventionally processed 
and reprocessed carcasses to be equivalent for aerobic bacteria, Enterobacteriacea, and E. coli. 
With respect to Salmonella prevalence, the overall difference between conventionally processed 
and reprocessed carcasses of 5.2 percent was not statistically significant. 

On-line Reprocessing 

On-line reprocessing addresses incidental fecal and/or ingesta contamination during evisceration. 
Acuff et al. (1986) and Izat et al. (1988) found that an on-line carcass wash reduced C. jejuni 
344 MPN/100 cm3 and 0.7 log10 CFU/1,000 cm3, respectively.  On-line reprocessing is 
automated and relies on washing systems in combination with antimicrobial agents to achieve 
desired results.  Water temperature, pressure, nozzle type and arrangement, flow rate, and line 
speed all influence the effectiveness of the washing system.  Multiple washers in series are 
generally more effective then a single large washer.  Bashor et al. (2004) and Kemp et al. 
(2001b) found that a three-stage system decreased Campylobacter by 0.45 log10 CFU/ml 
compared to 0.31 log10 CFU/ml in a single stage system (p<0.05).  Online reprocessing systems 
installed in one plant may not perform equally well in another plant. 
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The addition of antimicrobial agents generally increases the effectiveness of an on-line 
reprocessing system.  Fletcher and Craig (1997) found that 23 ppm free available chlorine 
reduced the incidence of Campylobacter-positive carcasses from 77 percent to 72 percent, and 
Salmonella-positive carcasses from 5 percent to 2 percent.  Bashor et al. (2004) found that TSP 
and acidified sodium chlorite decreased Campylobacter by 1.3 log 10 CFU/ml and 1.52 log 10 
CFU/ml, respectively (p<0.05).  Yang and Slavik (1998) reduced Salmonella on carcasses 
1.36 log
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10 CFU with 10 percent TSP, 1.62 log10 CFU with 5 percent cetylpyridinium chloride, 
1.21 log10 CFU with 2 percent lactic acid, and 1.47 log10 CFU with 5 percent sodium bisulfate 
(p<0.05).  Whyte et al. (2001b) found that 10 percent TSP combined with 25 ppm free available 
chlorine decreased Salmonella and Campylobacter by 1.44 log
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10 CFU/g and 1.71 log10 CFU/g, 
respectively.  On-line reprocessing is not as effective against tightly attached pathogens. 
Reducing tightly attached microorganisms requires longer contact times then normally occurs 
under commercial conditions (Morrison and Fleet 1985, Teotia and Miller 1975). 
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If properly performed, on-line reprocessing of contaminated carcasses can yield better results 
than off-line reprocessing, and improve food safety and the microbiological quality of raw 
poultry (Kemp et al. 2001a).  However, if process control is not maintained, results can be mixed 
(Fletcher and Craig 1997) and biological potential risk factors enhanced (Blankenship et 
al. 1993). 
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CHILLING 

Chilling removes the natural heat from the carcass and is complete when regulatory temperature 
requirements are met.  Immersion and air chilling are the primary chilling technologies in use in 
the world today.  Immersion chilling is the more common method; however, both methods 
acceptably decrease carcass temperature and inhibit biological potential risk factors. 

Potential Risk Factors 

Potential chemical risk factors are introduced during the immersion chilling process.  Tsai et al. 
(1987) found that lipids account for 84 to 98 percent of the organic matter in immersion chiller 
water and that aldehydes, which form as these lipids auto-oxidize, react with chlorine to form 
chlororganics, mutagenic chemicals that potentially impact the safety and wholesomeness of 
poultry products.  Marsi (1986) found that when free available chlorine levels are ≤50 ppm, 
minimal free available chlorine reacts with aldehydes and forms chlororganics.  However, when 
free available chlorine levels ≥250 ppm, chlororganic formation rises sharply. 

Biological potential risk factors exist during the chilling process as pathogenic and 
nonpathogenic microorganisms on the carcass and in the chiller environment.  Salmonella and 
Campylobacter are the most common pathogenic microorganisms present on carcasses and in the 
immersion chiller environment.  Clouser et al. (1995a) recovered Salmonella from 60 percent of 
carcasses pre-chill, and 57 percent of carcasses post-chill.  Wempe et al. (1983) isolated an 
average of 2.20 log10 C. jejuni/ml from the chiller water.  Loncarevic et al. (1994) recovered 
L. monocytogenes from 21 percent of post-chill skin samples taken from pre-chill 
Listeria-negative carcasses and determined that L. monocytogenes was a biological potential risk 
factor when the chlorine concentration of the chiller water was ≤10 ppm free available chlorine.  
Clouser et al. (1995a) found a 57 percent incidence in Listeria monocytogenes-positive kosher 
carcasses post-chilling, compared to 7 percent incidence with conventional slaughter methods, 
found no relationship between the incidences of L. monocytogenes in the flock pre- or post-
chilling, and concluded that the L. monocytogenes originated from the chiller water. 

Jimenez et al. (2003) found that immersion chilling reduced Enterobacteriaceae, E. coli, and 
coliforms on noncontaminated carcasses by 0.36 log10, 0.89 log10, and 0.61 log10 CFU/ml in 
carcass rinses, respectively, compared with 1.02 log10, 1.16 log10, and 1.23 log10 CFU/ml in 
rinses from fecal contaminated carcasses.  Berrang and Dickens (2000) found that immersion 
chilling decreased APC, coliform, and E. coli in carcass rinses by 0.7 log10, 0.3 log10, and 
0.4 log10 CFU/ml, respectively, (p<0.05).  Lillard (1990) found that immersion chilling 
decreased APC and Enterobacteriaceae by 0.92 log
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10 and 0.74 log10 CFU/ml. 

Sarlin et al. (1998) found that Salmonella-negative carcasses remain negative, provided they are 
not preceded by a Salmonella-positive flock and that the immersion chiller is a major site for 
cross-contamination between Salmonella-negative and -positive flocks.  Jimenez et al. (2003) 
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(p>0.05) found no correlation between visible ingesta on carcasses and the presence or absence 
of Salmonella during immersion chilling.  Twelve percent of carcasses with visible fecal 
contamination were Salmonella-positive following immersion chilling, compared to 30 percent 
without visible fecal contamination. 
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Air chill systems come in two basic configurations: clip-bar and vent-stream.  Allen et al. (2000) 
determined that microbial counts on poultry carcasses are lower in air chilling systems, 
compared to immersion chill systems.  Sanchez et al. (2002) reported the incidence of 
Salmonella-positive carcasses in air chillers at 18 percent, compared to 24 percent with 
immersion chillers; and the incidence of Campylobacter-positive carcasses in air chillers at 
39 percent, compared to 48 percent with immersion chillers (p<0.05).  Conversely, they found 
that coliforms and E. coli in whole carcass rinses were 0.25 log
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10 CFU/ml and 0.26 log10 CFU/ml 
higher with air chillers than immersion chillers, respectively.  The differences are not significant 
with regard to the cooling efficiency, but do affect the degree of physical contact between 
carcasses and the potential for cross-contamination.  Mead et al. (2000) found that dispersal of a 
marker organism was greater in a vent-stream system than in a clip-bar system.  Dispersal of the 
marker organism decreased when water sprays were turned off. 

Controls.  Chemical potential risk factors introduced during the chilling process through the 
excessive application of antimicrobial agents can be prevented, eliminated, or reduced to 
acceptable levels during the chilling process. Biological potential risk factors cannot be 
prevented or eliminated during the chilling process; however, they can be reduced to acceptable 
levels. 

Mulder et al. (1976) found that immersion chilling decreased Salmonella-positive carcasses by 5 
percent.  Acuff et al. (1986) found that immersion chilling decreased C. jejuni 69 MPN/100 cm3.  
Berrang and Dickens (2000) found that immersion chilling decreased Campylobacter spp., levels 
0.8 log10 CFU/ml.  Izat et al. (1988) found that immersion chilling decreased C. jejuni on 
carcasses by 0.9 log10 CFU/1,000 cm3.  Bilgili et al. (2002) found that immersion chilling 
decreased Campylobacter by 0.86 log10 CFU/ml, and the incidence of Salmonella-positive 
carcasses from 20.7 percent to 5.7 percent.  Lillard (1990) found that, on average, immersion 
chilling increased the incidence of Salmonella by 20.7 perecnt. 

More reduction in biological potential risk factors can be accomplished in a properly balanced 
immersion chiller than at any other processing step.  Conversely, an improperly balanced 
immersion chiller can increase biological potential risk factors.  However, regardless of how well 
any immersion system is operated, it cannot overcome excessive biological potential risk factors 
entering the chilling process.  The NCC (1992) recommends that processors focus on proper 
water temperature and water quality to control biological hazards in the immersion chiller.  
Water temperature should be maintained to ensure that product temperatures are in accordance 
with 9 CFR 381.65. l. 

Maintaining proper water quality requires balancing pH, maintaining a free available chlorine 
concentration, and minimizing organic matter.  Diffusion of hypochlorous acid (HOCl) in 
solution into hydrogen (H+) and hypochlorite (OCl-) ions is influenced by pH.  At pH <7.5 the 
hypochlorite ion is favored, which increases the concentration of free available chlorine.  At 
pH >8, the hypochlorous acid moiety is favored, which decreases the concentration of free 
available chlorine. 
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Chlorine is the most common and most effective antimicrobial intervention in use in immersion 
systems worldwide, and the effect is directly proportional to the free available chlorine 
concentration.  Thiessen et al. (1984) could not recover Salmonella from chiller water when the 
ClO
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2 residual was ≥1.3 ppm.  Wabeck et al. (1969) found that 20 ppm chlorine destroyed 
3.0 log10 Salmonella/ml in solution after 4 hours, but not Salmonella, on the surface of inoculated 
drumsticks.  Villarreal et al. (1990) found that ClO2 could eliminate recoverable Salmonella from 
carcass rinses.  James et al. (1992) found that the incidence of Salmonella-positive carcasses 
increased from 48 percent to 72 percent during immersion chilling in a nonchlorinated system 
compared to 43 percent to 46 percent when free available chlorine at the overflow was 
maintained at 4 to 9 ppm.  Yang et al. (2001) found that 10 ppm free available chlorine 
eliminated S. typhimurium and C. jejuni from the water in 120 and 113 minutes respectively; 
30 ppm produced the same result in 6 and 15 minutes; and 50 ppm in 3 and 6 minutes (p<0.05). 726 
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Three factors determine the amount of organic matter in the immersion chiller: flow rate, flow 
direction, and the cleanliness of the scald water.  When the chiller is more like a pond than a 
river, the water is stagnant and organic matter accumulates in the water, on the paddles, and on 
the sides of the chiller.  Thomas et al. (1979) found that when fresh water in-flow drops to 
<½ gallon/bird, organic matter accumulates in the chiller water.  Lillard (1980) found that more 
organic matter in the chiller will result in less chlorine available to kill bacteria, as it will be 
bound to and rendered useless by the organic matter.  The recommended method for performing 
water replacement is with a counter-current system. 

Tsai et al. (1987, 1992) found that organic matter in an immersion chiller equilibrates after 5 to 
6 hours of operation and requires 2 to 3 times more free available chlorine to achieve a 
2-log10 reduction in bacteria.  Lillard (1979) calculated the concentration of organic matter at 
equilibrium to be 91 ppm.  Allen et al. (2000) found that the concentration of organic matter 
increases closer to the exit and is reflected in the concentration of free available chlorine at 
different locations within the chiller.  Filtration of recycled water reduces the level of organic 
matter and spares free available chlorine for bactericidal activity. 

Russell (2005) recommended a pH of 6.5 to 7.5, a water temperature 4°C (<40°F), a high flow 
rate, and counter-current flow direction.  Waldroup et al. (1992) recommended 20 to 50 ppm free 
available chlorine in the intake water in order to reduce the total microbiological load in the 
chiller water.  The amount of chlorine added at the intake should be sufficient to achieve 1 to 
5 ppm free available chlorine at the chiller overflow. 

A recent study designed to examine the prevalence and number of Campylobacter on broiler 
chicken carcasses in commercial processing plants in the United States (Berrang et al. 2007) can 
provide an indicator for the effectiveness of reducing pathogen loads during all of the steps 
involved in poultry processing.  In the study, carcass samples were collected from each of 
20 U.S. plants 4 times, roughly approximating the 4 seasons of 2005. At each plant on each 
sample day, 10 carcasses were collected at rehang (prior to evisceration), and 10 carcasses from 
the same flock were collected post-chill.  A total of 800 carcasses were collected at rehang and 
another 800 were collected post-chill.  All carcasses were subjected to a whole-carcass rinse, and 
the rinse diluent was cultured for Campylobacter.  The overall mean number of Campylobacter 
detected on carcasses at rehang was 2.66 log CFU/ml of carcass rinse.  In each plant, the 
Campylobacter numbers were significantly reduced (p<0.001) by broiler processing; the mean 
concentration after chill was 0.43 log CFU/ml.  Overall prevalence was also reduced by 
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processing from a mean of ≥30 of 40 carcasses at rehang to ≥14 of 40 carcasses at post-chill. 
Seven different on-line reprocessing techniques were applied in the test plants, and all techniques 
resulted in <1 log CFU/ml after chilling.  Use of a chlorinated carcass wash before evisceration 
did not affect the post-chill Campylobacter numbers.  However, use of chlorine in the chill tank 
was related to lower numbers on post-chill carcasses (p<0.0003).  Overall, U.S. commercial 
poultry slaughter operations are successful in significantly lowering the prevalence and number 
of Campylobacter on broiler carcasses during processing. 
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CONCLUSIONS 

1. Physical potential risk factors are quality issues that rarely exist during poultry slaughter 
operations, and can be eliminated or reduced to acceptable levels when good commercial 
practices are implemented. Physical potential risk factors present a negligible risk. 

 
2. Chemical potential risk factors are food safety and quality issues that seldom exist during 

poultry slaughter operations and can be prevented, eliminated, or reduced to acceptable levels 
through prerequisite programs.  Violative chemical residues are a pre-harvest issue and the 
primary chemical potential risk factor.  According to the 2000 National Residue Program, the 
incidence of violative residues was 0.11 percent for all classes of poultry.  In 2000, U. S. 
poultry processors slaughtered more than 8 billion live poultry, which means approximately 
9.5 million poultry carcasses passed through Federally-inspected slaughter establishments 
with violative chemical residues.  Chemical potential risk factors present a minimal risk. 

 
3. Biological potential risk factors are unavoidable food safety and quality issues that 

continually exist during poultry slaughter operations.  Biological potential risk factors are 
present in and on all live poultry received onto official establishments and cannot be 
prevented or eliminated; however, they can be reduced to acceptable levels through the 
application of good manufacturing practices and process control.  Biological potential risk 
factors present a significant risk. 

 
4. The cited data for E. coli, Enterobacteriaceae, Campylobacter, Pseudomonas, Coliform and 

APC show that more microorganisms exist in and on poultry at live receiving than at any 
other process step in slaughter operations.  The scalding and immersion chilling steps 
produce the greatest overall reduction by washing microorganisms from the carcass surfaces. 
The feather removal and evisceration steps result in an increase from the previous steps in the 
number of microorganisms.  However, overall microorganisms are reduced from the number 
present when the poultry are at live receiving to when the carcasses are exiting the chiller. 

 
5. Numerical data are not available for Salmonella, however, Salmonella prevalence follows a 

similar distribution pattern.  No single process step, no matter how well controlled, can 
prevent, eliminate, or reduce to acceptable levels, a biological potential risk factor. 
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